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I. lifRODUGTIOH 

Tia® moleoular orbital approximation is probably the 

most important method of general utility for dealing with 

problems in molecular quaatua mechanics. It has found a 

large measure of success on qualitative and semi-quantitative 

grounds and, more recently, with the development of the 

Boothaan SOF procedures and by extensive use of configuration 

interaction, has yielded semi-quantitative results of consid-' 

erable interest. Much of the current work is centered on 

diatomic molecules, where attempts are being made to improve 

the calculations by an extensive use of configuration inter­

action. This is being made possible by the use of modern 

high-speed digital computers, and it seems probable that 

within the next decade many of the properties of the dia­

tomic s will be calculated. 

Yet for three and four center problems, even for the 

very simplest ones, such as and H^, the method does not 

seem capable of providing a truly accurate description of 

the electronic structure of a molecule. The principal 

reason for this, of course, lies in the prevailing use of 

atomic orbitals in building up the molecular wave function, 

since this leads to major difficulties in evaluation of the 

molecular integrals. The evaluation of three and four 

center integrals in particular has proved to be a singularly 

intractable problem. Although this problem is currently 
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toeing vigorously attacked with the aid of large computers, 

prospects for an early solution do not seem bright. Until 

more definite progress is mad® in the evaluation of these 

integrals, there seems little likelihood that reliable a 

priori ealoulations on polyatomic molecules (other than 

diatomlcs) will be possible using present techniques. 

In this thesis we describe some energy calculations on 

some simple two-electron molecular systems by a "one-center" 

method which seeks to avoid some of the difficulties of the 

conventional molecular orbital method, fhis one-center 

method for molecules is aimed primarily at eliminating the 

calculation of many-center integrals by replacing the usual 

set of atomic orbitals on the various atoms of a molecule 

by a more extensive set of basis functions on a single 

center, fhen the only Integrals to be evaluated are the 

one-center integrals and a comparatively simple two-center 

nuclear attraction Integral. Problems of polycentrlc 

integrals naturally do not arise. The one-center method is 

intended only for simple and highly symmetric molecules, 

such as Hg, H , and 1 , However, these simple two and 
iiî  

three electron problems are of such fundamental Importance 

in theoretical chemistry as to warrant th© development of 

specialized techniques for their solution. 

It has been the primary objective of this research to 

examine the relative advantages and disadvantages of the one-

center method as a systematic, practical procedure for cal-
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eulating th© electronic properties of simple molecular 

i|SteroSt For this purpose, ©ne-center expansions have been 

carried out for the hydrogen molecule and triatomlc hydrogen 

molecule ion two syetms of fundamental importance in 

eheaistry# 

She hydrogen molecule problem is of little interest per 

ae since it has already been treated with considerable accu­

racy by James and Coolldge and with lesser accuracy by many 

others, but it is a very convenient system with which to 

evaluate the various approaches to an energy calculation (and 

has been often used for this purpose in the past). The 

number of sinplifying assuffiptlons is here a minimuiB, and 

accurate experimental data and the results of many previous 

calculations are available for evaluation of results. 

fhe system was chosen because it represents the simplest 

example of an actual molecule containing three centers for 

which an accurate non-empirical calculation by any of the 

conventional methods is essentially intractable. This system 

should provide a more stringent test of t he one-center method 

than the hydrogen molecule problem since the distances from 

the expansion center to the nuclei are considerably greater* 

Although no experimental data are available for this case, 

there are several theoretical calculations with which to 

compare the results. 

All of the calculations described in this thesis were 

carried out with the aid of the IBM 650 computer at the 
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Ressarch Somputing Center at Indiana llnlverslty. One of 

th® principal objectives of this investigation has been the 

development of computer programs which enable the entire 

one-center calculation to be carried out completely within 

the 6$0 (that iSt with a minlffium dependence on hand compu­

tations), 

fhe thesis is divided into four chapters following this 

introduction, Chapter II coraprises a general exposition of 

t&e one-center method for molecules as well as a review of 

previous one-center calculations. In Chapter III we discuss 

the one-center calculations for the hydrogen molecule. The 

results of the calculations are presented in both tabular and 

graphical form and are analyzed in detail. The choice of 

basis functions, formulas for the basic integrals between 

these functions, and the construction of the symmetry-

adapted wave functions are also discussed in this chapter. 

In Chapter I? the results of the one-center calculations for 

h| are presented, while Chapter V lists the major conclusions 

of this investigation# 
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II. flS OIl-CHfEl MifHOD FOR MOLECTJLIS 

It has recently l>«on suggested by several authors that 

the electronic properties of simple or highly syiametrioal 

molecules can be profitably foimd by expanding the molecular 

wa¥© function in terms of a complete aet of functions centered 

at a single point in the molecule. Two essentially different 

methods have been proposed. In one method the total electronic 

energy of the molecule is calculated directly. Thus, for 

instance, Huzinaga (1) has calculated total electronic 

energies for and Hg by expanding the ground state wav# 

functions in terms of # and d type Slater orbitals centered 

at the midpoint of the bond axis, iandler (2) has carried 

out similar calculations for H2 and has also used one-center 

expansions for Ij* A generalized united atom method has been 

proposed by Chen (3) wherein the electronic wave function of 

a polyatomic molecule is expanded in terras of the eigen-

functlons of the corresponding xmited atom, the energy then 

being obtained by a perturbation calculation# Finally, Shull 

and liowdin (%} have emphaslEed that one-center expansions 

should be particularly feasible for small molecules containing 

hydrogen atoms and especially feasible for the higher excited 

Hydberg-like states of ouch Molecules. 

On the other hand, lllen and Hesbet (5) and, more recently, 

lesbet (6), have developed a one-center method which is quite 

different in emphasis from the above. These authors take the 
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Tiew that it is impractical to ealculate total energies of 

molecules direetly. Instead, they propose to calculate only 

eertain ^localized® molecular quantitieSf such as the nuclear 

quadrupole coupling constant ('^^l/r^^), which are primarily 

dependent on the electronic wave function in the neighborhood 

of a single atom, fhe wave function used in taking the aver­

age values is determined b]? a one-center energy calculation 

about the particular atom in question# However, no importanoe 

as such is attached to the energy value obtained. 

We will consider both of these methods in some detail# 

A* Calculation of the Total Snergy 

The one-center method for molecules is aimed primarily 

at eliminating the extreMely complex integrations that occur 

in the molecular orbital and valence bond approximations. 

We recall that in the valence bond approach the molecule Is 

regarded as composed of atoms and that the building blocks 

for the whole wave function are then necessarily the atomic 

orbitals ©entered on the various atoms of the molecule. On 

the other hand, in the molecular orbital method it is custwu-

ary, but fortunately not a necessary feature of the method, 

to express the molecular orbitals as linear combinations of 

atomic orbitals centered on the various atoms. The major 

difficulty encountered in using wave functions built up of 

atomic orbitals is in the evaluation of the molecular integralSf 
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For tiK>-e©iiter problems very coMplicated methods of integra­

tion are required# while in three and four center probleraa 

no satisfactory methods of integration are knoim* There 

are, of course, good reasons for the prevailing use of 

atomic orbitals in describing the molecular wave functions. 

It provides a very good approximation In many cases, 

especially for those Inner electrons which retain their 

atomic character and partake but little in the chemical 

binding. 

The idea in the one-center method is to replace the 

usual set of atoiale orbitals centered on the various atoms 

©f the aoleeule by a more extensive set of basis functions 

centered on a single point. We thus avoid the problems of 

three and four center integrals entirely, and are left 

with only the simple one-center integrals of atomic theory 

(klnetie energy, one-center nuclear attraction, aid one-

center electron repulsion integrals) plus a comparatively 

simple two-center nuclear attraction integral. These 

integrals are all easily evaluated, provided the one-center 

functions are limited to atomic central field functions, 

that is, a radial function f(r) multiplied by a spherical 

hajraonlc 

Since only a relatively small number of basic orbitals 

can be considered in mj actual caleulation, one-center 

calculations of the total electronic energy will be possible 

only for simple and highly siftaraetrical molecules. Inner 
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shell electrons on centei's awaj from the expansion center 

Mill b© especially difficult to represent by this method, 

fhis effectively limits the nsoleeules that can be treated 

to those containing only hydrogen atoas off the expansion 

©enter* However# it is the outer electrons belonging to 

the whole molecular frame which play the key role in 

determining the chemical and physical behavior of the 

molecule. It is Just these electrons, for which the atomic 

orbitals fora less satisfactory building blocks, that are 

best represented by one^center wave functions. Conceivably, 

the difficultI ooneerning the inner shells might be handled 

empirically, but this seems somewhat dubious in view of 

the many other limitations of the one-center method. How­

ever, see (3)* fhe expansion center, of course, can be 

ohosen anywhere it is physically and mathematically appropri­

ate to do so. It would ordinarily be either the point of 

maximum electron density or point of highest symmetry or 

both} it need not necessarily coincide with a nucleus. 

It seems not too optimistic then to expect that 

molecules such as it, 1^, lt> Ml, 01 , etc., can all be 
^ J J % 

satisfactorily handled by the one-center approach. It is to 

bo expected that the number of configurations necessary for 

an adequate description of the molecular wave ftmction will 

be fairly large, and that the convergence is likely to be 

slow. This rather obvious disadvantage is mitigated some­

what by the fact that the calculations are sufficiently 
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fystemtic and straightforward to enable complete autoaatio 

©OMputation on high apeed digital computers, 

fhe one*eenter method has been used to calculate the 

electronic energy of such simple and highly ayrametric 

laoleeules as H , GH , and IE , but with singularly 
2 2 1^ 3^ 

unsuoeessful results. Only for Ig and has it been 

possible to obtain a stable molecule. 

Morse and Stueeieelburg (7) very early calculated energy 

levels of H2 hy the unlted»atom treatment. More recently 

Matsen (6) has extended these calculations to the higher 

excited states, tjsing first order perturbation theory on 

a united*atom model for Matsen calculated the energies 

of the Is^y 2p<r, 2p77> 3p7T» and 3dS states. The zero order 

functions were the hydrogen atom functions of charge z 

centered midwf^ between between the nuclei| z i»2 for the 

true united atom He"*") was varied to minimize the energy 

of each state. The results were surprisingly good for the 

excited statesf but rather poor for the ground state. The 

reason^ probably, that the treatment is better for the 

excited states is that the electron density is s|>read far 

enough away from the two nuclei so that they appear united, 

Huzinaga (1) minimized the energy of the ground state 

of Hgt using for the wave function a three term linear 

combination of the Slater orbitals 8j|^(z}, Sj^(z»), and dj^(z*) 

centered at the midpoint of the bond. Here z and z» are 

variable parameters and 
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00 
(2,1) 

i ( z )  -  l V ^ . - « ' 3 C  
® a 20 

wh©jp® I® is a nomallzatioji factor and Xj^q is a normalized 

axially syi»etrie spherical harmonic• At the equilibrium 

distance of 2#0 a»u»«, the best energy obtained for this 

three term function was -1,0714.7 a.u, for z»l, s»«3. This 

is to be compared with the exact iralue (9)» -1*1026 a.u.f 

and to Matsen's result, -0.967 a,u., for the beat single 

(Is) function, 

luzinaga (1) also attempted a one-center calculation 

of the total energy of the hydrogen molecule at a fixed 

Internuclear distance of l«i|- a,u. The stages in his 

calculation are suramarized below, fhe expansion functions 

ajp® the Slater functions (2.1), the z's being varied to 

Biiniraize the energy. As usual, the expansion center is 

midway between the two nuclei. The experimental energy 

for H2 is -Ittlk a.u. 

(1) fhe best wave function for Hg of the type sj^(z)^ 

gave -0.9879 a.u. for the total energy which means a binding 

energy of -0.0121 a.u.} that is, the molecule is not stable. 

(2) If, Instead, the function /tf(l)/^(2), where « 

%to«io units are used throughout this thesis. One 
atomic unit of length (a.u.) equals one Bohr radius, 0.5292 
A| one atomic unit of energy (a.u.) equals twice the 
ground state energy of the hydrogen atom, 27.206 electron 
volts (e.v.). 
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used, tb© raoleoule does bind and 

has a total energy of -1.020 a.u. for th# optimum values 

of 0^, ©2* z, and a*• It should be noted that this function 

Is still spherically symmetrie. 

(3) If one of the electrons is assigned to a Hg type 

orbital, that is, a cigar shaped orbital symmetric about 

th© axis, and the other electron assigned to an atomic 

Is-type function, a much better energy results. This is to 

be expected since the wave function now reflects the Xg 

syiroetry of th© ground state while th© use of separate 

orbitals for th© two electrons serves to minimise th© 

energy of repulsion between the two electrons. The calcul­

ation gives a total energy of -1.095 a.u. 

(i|,) Addition of a single p̂  configuration to approxi­

mation (3) improves the energy by only 0»011 a.u. for a 

total energy of -1.106 a.u., which is still less than th© 

simple Heitler-London-Sugiura value for Hg, -1.115 a.u. 

i S )  In his final approximation, Husinaga used separate 

Hg type orbitals for each electron (that is, using s and d 

orbitals only) and obtained a total energy of -1.1397. 

fhis seems to be an unreasonably good energy for such a 

simple wave function. ¥e have therefore repeated 

Huzinaga's woric and have reproduced his results up to the 

final approximtion. We believe Huzinaga's final result to 

be in error and that th© actual energy to this approximation 

is -1.106 a.u.J the details of this calculation are in 
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GMptei' III. 

(2) has applied th® one-center method to the 

systems Hgt linear symmetrical h|, and equilateral tri­

angular Using a superposition of six configurations — 

three (ss) and three (sd) — constructed frcaa Slater orbltals 

with the same orbital exponent for s and d functions, the 

best energy obtained for Hg was only -l,088 a,u, for the 

equilibrium distance 1*1). a.u* We note that this value is 

less than that given by approximation (3) of Huzinaga, a 

two configuration wave function, but employing different 

orbital exponents for the s and d functions. In the caleul-

ations on Hj, the expansion center was on the central 

nucleus for the linear syiametrical configuration and at the 

center of syraBietry of the molecule for the triangular con­

figuration. The best energies obtained were -1.163 a.u. 

and -1.20i|. a.u, for the linear (1®»1.55) and triangular 

eases respectively. Although the energy of 

i« not known, we can compare these results with the 

corresponding values obtained by Hirschfelder and others 

(10, 11) using the valence bond method, namely, -l»2l|.76 

a.u* for the linear case (1«1#60) and -X.2925 a.u. for the 

triangular ease (1«1»82)« We shall discuss these calcul­

ations more fully in Chapter IV. 

Buckingham, Massey, and fibbs (12) carried out a one-

center self-consistent field calculation for methane. They 

treated Gl|^ as an eight-electron problem and assumed the 
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wave fimction had complete spherical symmetryj that is, 

they included only the configuration (2a)^(2p)^, where the 

s and p functions are Slater orbitals centered on the 

cartoon atom. They also averaged the nuclear field over all 

orientations about the central nucleus. The calculations 

indicated the system was stable by ninety per cent of the 

experimental binding energy, This is a surprisingly large 

energy when one considers that the spherically symmetric 

function used does not reflect the tetrahedral character of 

the molecule, and that ordinary configuration interaction 

was not Included, It should be emphasized that in dealing 

with a configuration such as {2s)^(2p)^ for which the 

charge cloud is spherically syiametrio, there is no addi­

tional approximation implied in using a Hamiltonian in which 

the nuclear field is averaged over all orientations. The 

basic reason for this is that when the charge density is 

spherical the electron-nuclear interaction energy is solely 

determined by the first term in the expansion of the nuclear 

potential in spherical harmonics (13). 

Issbet (6) has repeated and extended this calculation 

and has established that the value reported by Buckingham, 

Massey, and Tibbs was in error. The calculated binding 

energy is actually negative instead of positive as reported. 

Further calculations by lesbet Indicate that the addition 

of higher spherical harmonics leads to very slow conver­

gence to the true electronic energy of CH|̂ , 
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Banyapd and March (13) used similar methods to obtain 

one-center wave functions for the ammonia and water mole-

ciilea, Ilsiis^ one-electron analytical functions centered on 

the nitrogen and oxygen atoms, they constructed the ten-

electron determinantal wave function corresponding to the 

spherically synmietric configuration (l8)^(28)^(2p)^ and 

«lni»lzed the energy with respect to the parameters in 

the one-electron ftmctions. fhe molecular energies thus 

obtained were quite poor, for example, -75*00 a.u. for 

water, compared to the experimental value -76«i|.7 a,u» 

However, when these wave functions were used to calculate 

X-ray scattering factors, good agreement with the exper­

imental scattering factors was obtained. 

We note in passing that one-center calculations of a 

similar nature have also been carried out by Bernal (14) 

and by Garter (15) with equally disappointing results* 

These results would seem to indicate that one-center 

calculations of the total electronic energy are in general 

not at all practical for systems as complex as CH|^ and 

and are only moderately so for simple two and three 

electron systems, such as Hg and ly It should be noted, 

however, that all of the above calculations, except that 

of lesbet on CH|^, were carried out by hand with a very 

limited set of basis functions and only a very few config­

urations* But if the calculations are done on electronic 

computers, expansions of thirty and forty terms become 
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quit® feasibl®, ©ipecially fojr two and three electron 

systeM. Froa this point of view then, Huzinaga's and 

Handler's results seem quit© encouraging# It seems clear, 

howeTer, that eight and ten electron problems are at 

present somewhat beyond the scope of the one-center method. 

The one-center calculations described above all make 

use of "ordinary** configuration interaction; that is, the 

molecular wave function is expressed as a series of con­

figurations formed from a complete set of analytic one-

electron functions which are introduced right from the start, 

Recently, however, Mesbet (16) has shown that the config­

uration interaction problem is greatly simplified if the 

calculations are based on an orthogonal set of self-consist­

ent orbitals satisfying the Hartree-Fock equations (that is, 

orbitals obtained by the loothaan procedure)(17)• Unfortu­

nately, this simplification did not come to the author's 

attention until the present investigation was more than half 

over. Consequently, the configuration interaction method 

used here is the conventional one described by Condon and 

Shortley (18) and by ioys (19)« 

When one-center calculations including the super­

position of many configurations are carried out, the 

question of what basic functions to use is of minor impor­

tance. Wave functions ©f any desired accuracy can in 

principle be obtained by the superposition of a sufficiently 

large number of configurations. But when the number of 
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configurations is limited, as in practice it must be, the 

choice of basis becomes very important, Unfortunately, 

there are really no adequate criteria for making the choice. 

The expansion postulate, of course, requires that the basic 

orbitals be members of a complete set. Moreover, we require 

that all integrals between the basic orbitals be readily 

evaluated. These vo uld appear to be the minimuia require­

ments, The following additional features, although not 

really necessary, would be most desirable from the point 

of view of siMplifying the numerical work. 

I4 It is desirable that the basic functions form an 

orthonormal set and that the basic integrals between these 

functions be obtained by algebraic rather than nimerical 

methods, thus eliminating the rather laborious transfor­

mations of th® basic integrals from the non-orthogonal 

basis to the orthogonal basis. Also, the evaluation of th© 

final energy matrix elements as well as the solution of the 

secular equation is greatly simplified if the whole calcu­

lation is carried out in an orthogonal basis. It should be 

understood, however, that the use of orthogonal functions is 

purely a matter of mathematical convenience and has nothing 

to do with the physical theory. 

2. If the number of non-linear parameters is kept to 

a minimum, the variatioiml problem will be greatly simplified. 

The problem of simultaneously varying many non-linear para­

meters is an enormous one and must always be treated by trial 
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and ©rrojp methods. The linear parameters, of course, are 

nicely Imndled by the mechanics of the variational principle 

itself. 

3, fhere should be some systeraatic method for choosing 

the basic functions• This feature in particular is lacking 

in most of the conventional approximation methods. 

1|.. Finally, the functions chosen should lead to rapidly 

converging expansions, Liiwdin (20) has investigated this 

point for two-electron systems and has been able to construct 

that set of one-electron functions, termed natural spin 

orbitals (ISO), which when used to form configurations, leads 

to the most rapidly converging expansion. This analysis is 

of no help, however, in choosing initial functions, since 

the construction of the HSO's requires that the variational 

problem be already solved. 

Generally speaking, no known class of functions possesses 

all these features. However, Shull and Lowdin (21) have 

recently suggested a set of functions which meets these 

requirements in many respects, namely, the complete set of 

orthonormal (2q^2)--order associated Laguerre functions as 

radial functions multiplied by the spherical harmonics as 

angular functionsi 

3Sr® (2s5r), (2zr)e"®% (9 J), (2.2) 
nq n^-q+i q® 
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where tli® I. are th® (2q+2)-order Laguerre polynomials, z 

is an adjustable parameter, and is a normalizing 

factor# The required Integrals between these functions are 

all easily evaluated, fhe eigenvalue spectrum of the set 

is entirely discrete, which is apparently of importance for 

convergence (21). Of great practical advantage is the fact 

that only a single orbital exponent occurs for all functions 

with the same angular dependence} this renders a great 

simplification in the computational work, both in evaluating 

the integrals and in solving the variational problem. 

These functions were very early used by Hylleraas (22) in 

applying configuration interaction to the ground state of 

the helium atom and, more recently, have been used in 

similar calculations on helium and helium-like ions by 

Iiowdin and Shull (23), Slater (2ij.), and Hol/^ien (25), 

k very general set of functions for which all the 

integrals occurring in the one-center method can be eval­

uated in closed form has been given by Chen (26), This is 

the set 

(2.3) 

where k is some prefixed positive number and z>0. For k»»l 

we have the familiar Slater functions, which for fixed z 

(n*l,2, • • • ) fom a complete set with discrete eigen­

value spectrum. For k«2 we have the complete set of Gaussian 
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funetiona, fh& cases for k other than 1 or 2 have not been 

investigated, but presumably also form complete sets (for 

fixed z). 

lesbet (6) has found the Slater functions particularly 

convenient to use in one-center expansions since they pro­

vide a Health of non-linear parameters, which when properly 

varied, lead to very rapid initial convergence, although 

subsequent convergence as more teras are added may be quite 

slow* However, the many different exponents make the eval­

uation of the basic integrals correspondingly more difficult. 

Moreover, the Slater functions with different exponents form 

an overooraplete set, which, as has been pointed out by 

Lowdin (27), may occasionally lead to difficulties in solving 

the secular equation. 

In a recent note Parr and Joy (28) have suggested that 

improved one-center expansion functions might result from 

dropping the requirement that the principal quantum number 

n in (2,3) be integral. Although a single configuration 

constructed from such functions might very well be a superior 

starting function, it seems very unlikely that the ultimate 

convergence as more terms are added will be much affected* 

Moreover, the variation problem has been greatly complicated, 

since now the principal quantum number, as well as the 

orbital exponent, is a non-linear parameter to be chosen by 

trial and error. 

Another possible system includes the use of the complete 
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set of «xpon®3atial functions, ® ® positive 

integer, as is eurrently being used by Boys (29, 30), 

As has been shown by Shull and Lowdin (21), the 

hydrogen-like set of functions, with exponential dependence 

z/n, is not a suitable system since convergence can be 

obtained only if account is taken of the rather annoying 

continuuffi wave functions, without which this set is not 

cODiplete. 

Me have based all our one-center calculations on the 

complete orthonormal set of associated Laguerre functions 

(2#2), since for the two electron systems considered here 

this seeas to be the most convenient set to use from the 

point of view of integral evaluation aM solution of the 

variational problem# 

B. Oaleulation of "Localized" Observables 

Me have seen that the direct calculation of total 

electronic energies of molecules by the one-center method 

is limited to relatively simple hydrogenic systems. Allen 

and lesbet (5, 6) have recently developed a modified method 

which retains all the advantages of the one-center approach 

but is at the same time applicable to more complicated 

molecular systems. In particular, systems with inner shell 

electrons not on the expansion center can be treated. 

Instead of calculating total energies directly, only those 
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'*l©cali2®dl'* quantities aj?@ calculated which are primarily 

dependent on th® electronic wav® function in the neighbor­

hood of a single atom. Th® reasoning behind this method is 

as follow®J 

Since in any actual one-center calculation only a 

relatively sitjall number of basic functions can be considered, 

it will be extremely difficult to approxiaiate the molecular 

wave function to equal accuracy throughout all regions of the 

molecule. Hence# except for certain very simple systems, 

properties such as the total energy or dipole moment, which 

depend strongly on the value of the wave function over the 

whole molecule, cannot be calculated with one-center wave 

functions. But, given a wave function which is sufficiently 

accurate in the region of a single nucleus, it should be 

possible to calculate those molecular quantities, such as 

the electronic coupling with nuclear moments of the force 

field on the nucleus, which heavily weight the electron 

density In the vicinity of the nucleus. It is assumed that 

the "best^ wave function in the vicinity of a given nucleus 

can be obtained by carrying out a one-center configuration 

interaction calculation about that nucleus of the total 

electronic energy of the molecule. The wave function 

obtained cannot be expected to be of practical value beyond 

the nearest-neighbor nuclei to the expansion center. More­

over, the energy values obtained will in general be very 

poor and will have significance only insofar as the lowness 
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of the energy value is an indication of the accuracy of a 

variationally determined wave function. It Is not at all 

obvious, however, that a wave function which is an admittedly 

poor approximation to the complete molecular wave function 

will be a good approximation to the true wave function in 

the region of a given nucleus simply because it has been 

obtained by a variational calculation# This point could be 

easily checked by carrying out calculations on a system such 

for which the exact wave function is known, but this 

does not seem to have been done as yet, 

fwo molecular observables which can be easily calculated 

by this method are the force on a given nucleus a, given 

by the mean value of aad the nuclear electric quad-

rupol© coupling^ constant, which is proportional to the mean 

value of 1/r̂ . 

One feature that makes this method very attractive is 

that it can be adapted to the indirect calculation of 

electronic energies of molecules, or rather, to the caL cu-

lation of the difference of electronic energy between two 

isoelectronic systems. The procedure depends on the Hellman-

Peynraan theorem (5) 

^<H> = (2-W 

where the average values are taken over the exact wave 

functions for the Hajiiltonian. For certain parameters A , 
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til® derivatives of tli© Hamlltonian are aims of "localized" 

operators for which it should be possible to obtain accu­

rate mean values using wave functions obtained from one-

center energy calculations about the appropriate nuclei of 

the molecule. The difference in electronic energy between 

two isoelectronic systems, characterized by different values 

of the parameter A , can then be obtained by integrating the 

mean values of these derivative operators. 

Jk  simple example will illustrate the method. Consider 

the isoelectronic systems Be, I»1H, E&2t 'til© inter­

mediate systems with fractional charges on the nuclei such 

that the sura of the nuclear charges adds up to four. The 

electronic Haailtonian for a four electron system may be 

written 

where 2^ and are the charges on nuclei a and b, respec­

tively, and Z^+2^=l|.. By differentiating with respect to the 

charge on nucleus aw® get the electronic potential 

k 
( a/aZg^)H a j: -l/r^i- (2.6) 

i^®l 

For a fixed internuolear distance, the mean value of this 

electronic potential must be a smooth function ̂ "(2^) ot the 

nuclear charge at center a. Similarly, the mean value of 
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$1 •l/r, is a smooth fimotion f(Z ) of the charge at center 
Dl D 

b. The wave functions used in talcing the mean values must 

be obtained by separate one-center energy calculations about 

©©liters £ and ̂  respectively. Separate one-center calcula­

tions are required for each v^alue of and in the range 

of interest. Sine® 

d<H> « VaZg^<H>dZg+ d/dZ^<H>dZ^ 

« tiz^)&z^ + f(Z^)dZ^, (2.7) 

the difference between th© electronic energy of LiH and the 

energy of B© is given by 

A ro 
E « j^f(Z^)dZ^ + j^f(ZQ)dZ^, (2.8) 

since f(Z^) is clearly equal to f(Z^) over the range O^Z^^l. 

Since fCZg.) is determined only for a few values of Z , A1 Cm 

must be obtained by graphical integration. Clearly, the 

one-center caleulations about a when Z^ is small will be less 

accurate than for Z^^ large in a case such as LiH, but calcu­

lations must be aad© in both oases. 

No detailed calculations using this method have been 

reported. Preliminary results by Hesbet on the Heg# LiH, and 

Be systems seem quite encouraging, however. It is too early, 

however, to Judge the ultimate worth of this approach# 
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III. OII-CEITIR CALCIIMTIOI PGR THE ffiDROGEH MOLECULE 

We now apply th® one^oenter method outlined in the 

preceding chapter to ealculate the total electronic 

energy of the ground state of the hydrogen molecule. A 

preliminary report (31) of this investigation was given at 

the Molecular Quantum Mechanles Conference held in Austin, 

Texas, December 7-9, 1955* 

A. The Configuration Interaction Problem 

1, Approxiaiate g^round state wave functions 

Let (ai«l,2, . . , ) be a complete orthonormal 

basic set of one-particle functions {spin-orbitals) centered 

at the origin of coordinates. We seek a normalized approx­

imate wave function for the ground state of the hydrogen 

molecule of the form 

2 (3.1) 

wh.r. th. are normalized antlspmetrlzed product 

wave functions (Slater determinants) for the various con­

figurations of the molecule, and x^^ » space-

spin coordinate of electron 1^. (A configuration is here 

defined as the selection of any two one-electron functions 
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from the complete set } i in addition, if m<n the lu *• m 

configuration is said to be ordered and for convenience is 

denoted by the abbreviated symbol E)• 

The best set of coefficients is determined by 

minimizing the energy E « jH $(Xj^,X2)dVj^dv2» 
op 

where H is the spin-free electronic Hamiltonian for the 
op 

hydrogen molecule, containing only kinetic and electro­

static terms} namely, 

Hon = - I -h -h * h (3.2) 
l̂a Îb 2̂a '^2b 1̂2 

(This Hamiltonian is in atomic units) The beat coefficients 

Cjj, satisfy the equations 

£ {<L|H^p(K> - E « 0, L»l,2, . . . (3.3) 

while the corresponding best energy E is the lowest root of 

the secular equation 

det {<L|H^^/K> - E = 0, (3.lj.) 

where 

(3.5) 

We note that in this secular equation the E's occur 
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This form of the secular equation is especially convenient 

for numerical solution using matrix aiethods, particularly 

iterative ones, and is a result of our having chosen the 

one-electron functions to be orthogonal, 

Th® one-electron functions used in the construction 

of the determinantal wave functions are products of the form 

where the form a complete orthonoriaal set of space 

orbitals depending only on the one-electron space coordinate 

r * and o((8) and /S(a) are spin functions. Here 

refer to a coordinate system with origin midway 

between the two nuclei and with the z«axis along the inter-

nuclear axis. 

The one-electron space orbitals /^(r) were chosen from 

the complete orthonoriaal set of functions 

« (3.6) 

(3.7) 

(3.8) 

where x «« 2zr» Here H^q(x) Is the associated Laguerre 

orthogonal function of order 2q+2 and is the 

(2q+2)-order associated Laguerre polynomial of degree 



www.manaraa.com

28 

n»q-2. dtfliaed by 

(3.9) 
n^q-*-l (n-q-l-i)l(2q4-2-».i)l 11 

Th# quantities n and q ar© positive integers such that 

n>q4lj z is a variable paraiaeter called a scale factor (or 

effecti'r© nuclear charge, although this terminology has 

little meaning here); and X is the usual normalized 
qM 

spherical harmonic with the particular ohoioe of phases as 

defined Condon and Shortley (18, p. 52). 

A detailed discussion of the associated Laguerre 

functions is really unnecessary here, since adequate 

discussions can usually be found in any book on the special 

functions of laatheiaatioal physics and chemistry* for example 

(32f 33, 3k)• However, in Section A of the Appendix, we 

have summarized a few of the important properties of these 

functions that have been particularly useful in this inves­

tigation. 

The associated Laguerre functions of any order are 

included as a special ease in the complete set of Slater 

orbitals 

for it is easily shown that if Slater functions all having 
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the same orbital exponent are laade orthogonal by the 

Schmidt process (27» p. kS)$ th© associated Laguerre 

functions, or linear coiabinations thereof, resultj con­

sequently 

^nqm ** ^q+l+i^qm, {3«11) 

where 

0,(ag) . 1 i)i ' ("f ri'' *-
{ x; (n-q-l-i)I(2q+2+i)Ul 

Here Lw® drop the q index since both (3»10) and 

(3»11) ai'e already diagonal in qj is the ith element in the 

nth row of the Schmidt tranaforiaation matrix that transforms 

the overlap matrix C%4-q_4.i^ j4.q4.1J for the Slater functions 

{3*10) into a unit matrix, that is, 

Ĉ nJ Ĉ i+q+1, J+q+1-̂  &njJ "[l]* (3.13) 

The radial function is similar to the radial 

eigenfunctions for the bound states of the hydrogen atom, 

but instead of the orbital exponent varying as l/n, th® 

same exponent is used for all Ijjq. Hence these functions are 

more concentrated in space, for the high n values, than the 

hydrogenic functions. On the other hand, the quantum numbers 

n, q, and m have essentially the same meaning, so that we 
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iZ maj applj to th® t-ii® same spectroscopic notation that 

is eiaployed to deseribe th® bound states of th® hydrogen 

atom. In addition# w© shall add subscripts when necessary to 

Indicate the value of th# magnetic quantum nimber. Thus, for 

example, the functions (3.7) will be denoted in general by 

and in particular by ®® 

foi-th. We prefer this notation to the usual spectroscopic 

notation applicable to one-electron orbltals in a diatomic 

molecule, namel;^, ns, np<r, npir, nd</", ndir, , . • , since this 

notation does not distinguish between plus and minus v^alues 

of ffi. Furthermore, we shall usually refer to the simply 

as "Laguerre functions (orbitals)", although this terminology 

is strictly applicable only to the radial function R . 

Let us now return to the problem of further specifying 

the approximate wave function {3«1). Since the ground state 

of th® hydrogen molecule is experimentally known to have the 

syiwaetry we need consider only those which by 

themselves or in combination with other have this 

sywmetry. How the most general antlsyranetric two-electron 

wave function that can be constructed from the spln-orbltals 

and has the form 

f (x^.xg) - 2-*fe A 
Bin 
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fM« fanetioR Is rdadilf ®#®o t© b# a &wii of a singlet t@m 

•aod flit Ihf®® eo«poii.«iit» of a triplet t®r». W« shall be 

iaterestei only ia tli« si.iigl©t component which ean b® sorted 
1 2 

ottt by sppljlBg th» proJ®@ti9n operstar (35) 0«{1-|S )« 

fCl-P^), wh«r® S is th« spia angular moinentum operator aad 

1» th® ©p®r®tor that perioutes th© spi® coordinates of th« 

two ©laetroai* w® obtain 

* (3.15) 
bkh 

Bi" sxpamilng th® dateminajnta, this funetion can b® written 

as a product of a pure spaee part and a pur© spin part, 

(3.16) 

f Cri.rg) « £ 

^ ^ ^ (3.17) 

It is oonvenleiit t© write C3»17) is the abbreviated form 

m ^<a 

where hy mean the normalized two-eleotron space 
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function sjmetric in the coordinates of the two electrons 

defined by 

fh© spin part of (3.16) plays no further part in the calcula­

tion and will henceforth be ignored. 

In order for to have symmetry, it must 
g 

have rotational syaiHietry about the bond axis, be syBimetric 

under Inversion at the center of symmetry, and have positive 

reflection symmetry across any plane containing the bond axis. 

The same restrictions, however, need not be put on the one-

electron functions in terras of which we expand for 

as long as the one-electron functions in any configuration 

are both even or both odd their product will be even; more­

over, the requirement of rotational symmetry about the bond 

axis will b® met as long as the m quantum numbers of the two 

functions sum to gero. The requirement of positive reflection 

symmetry further restricts the expansion to terms symmetric 

in the TO quantum numbers; that is, not only must the angular 

coordinates appear as ibey must enter as the cosine 

of where M is an integer. Expressed analytically, 

the configuration will have the proper symmetry only 

if ^a'^'^b even ah'i For example, the configurations 
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(msns), (insndQ), (ladQndQ), (mdQniQ), (mpQiapQ), and (mpj^rap^j^) 

(ndQndj^)* (mpj^npj^) do not. 

lot® that a configuration of the type (lap^np^j^) must 

b@ symmetric in both the total and magnetic quantum numbers, 

that is. 

Me have investigated the importance of the following 

kinds of oonfigurationai s», sd^, sg^, si^, sl^, sn^, PqPq» 

dgdQ, pQ^Q* and Although not all of these configura­

tions were used at any on© time, still a sufficient number of 

combinations were tried to permit a reasonably full evalua­

tion of the importance of each type. 

2. Evaluation of the energy matrix elements 

fhe energy matrix elements ^I»|h |k\ where 
op ii tC JL 

and $ given by the formula 

all have symmetry, while the configurations (msnpQ) 

+ aig,j{l)np2^(2) + rap (3.21) 
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+ (klH^l m) 5(l,m) + {m) 5(k,n) + (km I In) + (lm|kn^ (3.22) 

where S{k,m) is the Kron©ok#r delta and 

(3.23) 

(telln) « 54(1)4(1) (l/r^2^^1^^^^n^2)dv^dv2 

fhe factor I has the value (2) "*" 

3, Evaluation of the basic integrals in the Slater repre­

sentation 

In this and the next section we give specific formulas 

for all the Integrals that can occur in molecular calcula­

tions by the one-center method. Formulas are given for the 

integrals in both the Slater and Laguerre representations. 

The reason we require the Integrals in the Slater representa­

tion is that for the nuclear attraction and electron repulsion 

integrals it is usually necessary to calculate the integrals 

between Laguerre functions In terms of the corresponding 

Integrals between the Slater functions, using the functional 

jcalation (3,11) connecting these two functions. The nota­

tion is that of (3«10) for the Slater functions and that of 

(3•7-3.8) for the Laguerre functions. 

The integrals are most easily calculated in terms of 
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certain auxiliary functions. We introduce the following: 

00 

T(n,q) « J e r" dr « nl/ q" ̂  {3.2l|.) 
0 

P(n,q) a f 
^ t 
 ̂ -qr n , 
© r dr 

0 

- ^ lF^U,n^2n) 
« r t r ^ .J 

n+1 ^ {n-»-r+l)l ^ 

A(n,q) w ] e"**^^ r^ dr q>0 
\ 
, -q n 1, 

« Z qVlci all q 
qn-f-l ĵ o 

» T(n,q) - D{n,q) (3.26) 

*** M  ̂ -̂ y n 
OP -

J"* ^ M 1 e X dx ) e y dy 
0 Jq 

(3.27) 

where 

/ ,v t, , ^ (n+r ̂ , r . «^ 
P (k) « (1-k) Z ( a / (3.28) 
« raO 

Here j^Fj^(l,n"f2jq) is the confluent hyper geometric function; 

see Sneddon (31|.» p. 32) for notation and definitions. 
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Convenient mathematical relations for generating the A'a, 

D's, and J's by completely inductive methods are given in the 

Appendix. 

Th® basic integrals in the Slater representation are now 

easily expressed in terms of these auxiliary functions. The 

integrations are elementary and involve only well known 

standard techniques, Henee we give only the final results 

and refer to (36} 18, p. 175) for the details. 

(a) Overlap integral. 

z  z >  
) » )S(q»q')NV,T(n+n',z+z') (3.29) 

z 
where H is the normalization factor for the Slater functions 

n 

given by 

(3.30) 

(b) One-center nuclear attraction integral. 

(o) Kinetic energy integral 

a' , ,) • M(m.m')S(q,q")HV' 
aqm' "n'q*a» n n» 
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X ^(n-Q-l)(ii«-q-l)T(n*n*-2,z+z') - [zCn'-q-D 

+ z* (n-t-l)] f(n+n»-l.,2+2«) + 2««T(n"»-n', z+z* )j (3.32) 

(d) fwo-Qgnter imoX®ar attjpactlon Intoi^ral. 

X [e{n+n»+k,ot) + A(n+n«-k,c()] (3.33) 

wher© polat a is a distance R from the origin. In evaluating 

the integral the z-axis is taken to pass through the point a, 

as is eustomarjf. For a gi^en q and q', takes on the 

values k « q+q'» . . .»(q-q'| » The quantity ol is equal 

to (z+z')R. The quantity c is defined by 

/— ft 

e {qm,q«iii') J^0(qitt) ©(q«m») ©{km-ai')sin9de (3.3ij.) 

|l». 
The c 's are tabulated by Oondon and Shortley, pp. 178-9, 

over a wide range of q'a and m's. 

(e) llectron repulsion integral. 

(»(l)b(£)|l/rj^2lo(l)d(2)) • (a(l)o(l)|l/j!-j^2|b(2)d(2)) 

®n! ®n° «"< Va'^o^c' 
a D 0 u k 
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X (3.35) 

where e^ la defined by (3»28) and 

«».®» n*n -«r, '^^2 
U in n jn, n.) «ijr, « ^ ~ r ® " ® dr.dr-

^ V ©' i3 d -'q-'Q 1 -k+l 2 12 

+ J(n̂ 4-n̂ -k-l,/ffjnĝ +n̂ +k:,rt) (3*36) 

where r^ and r^ are the lesser and greater, respectively, of 

r^^ and rg* Also, and ̂ az^^+z^. 

For those c 's not given by Condon and Shortley, we have 

used th© following formula for the special case m * m' » 0. 

o^qO.q'O) « [{2q+l)(2q'+l)]^ (3.37) 

(2gn) (g-k)l ^ (g-q)l ^ (g-q')l ^ 

where k'»"q+q'«2g and |q-q'l£k^q+q*. This formula is due to 

Gaunt (37). 

I4.. Evaluation of the basic integrals in the La^uerre 

representation 

The integrals in the Laguerre representation can now 

obviously be obtained from those in the Slater representation 
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by me&na of th« defining relation {3*11) connecting these 

two representationa and the integral formulas of the preced­

ing seotiem. fhus, 

« Z C^Ca)C^(b)(X^(K|X^) (3.38) 
i ̂ ̂ 

^̂ 0,(.)0̂ ( = )0̂ (b)0,(d) 

* (3.39) 

where G^(a), etc., denote the coefficients in the expansion 

of the Laguerre functions in terms of the normalized Slater 

functions 

The evaluation of the one-electron integrals is simple. 

The matrix (X^|k1XjJ is written in square form and contracted 
on the right with the column |[c^{b)j to give the matrix 

which is then contracted on the left with the row 

£c^(a)J to give the integral This numerical 

transformation, however, is required only for the two-center 

nuclear attraction integrals, since in the case of the 

kinetic energy and one-center nuclear attraction integrals 

there exist closed form expressions of quite simple form; 

see (3»i|-3) and (3»i|i|.) below. 

The situation is more complicated for the electron 

repulsion integrals, since here we are dealing with the 

numerical transformation of a four suffix matrix. The usual 
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procedur® is to write the matrix as a two 

suffix matrix [^jl/r^^glt] , that is, one row and oolumn 

corresponding to ©ach pair of values of 1 and j. The corre­

sponding vectors 

C (a,c) « fc, (a)G.(c) + Cja)C (c)}{l - i^{i,j)} (3.40) 
s ^ ^ J 1 

are then formed, and by two contractions of these with 

[sjl/rj^gl'^'J of integrals 1^/^x2 iVd ) is found. 

It is this transformation which is one of the most difficult 

portions of the numerical calculations. 

¥e have used a slight modification of this procedure, 

however, which reduces the amount of computation necessary 

by a factor of two or more. The method consists of expand­

ing not in terms of products of Slater functions, as in ct Q 

(3*^0)» but instead as a simple polynomial in r multiplied 

by an exponential term and an angular term, that is. 

« ° ^ P <ia®a ^^c^c 

where I«n +n -q -q -2. Equation (3*39) can then be rewritten 
w w cil O 

• XOp(».o)D <b,d)(p(l/r |q) (3.1^2) 
p,q i' H 

where (p|l/r2^2l^) easily evaluated using (3.35) and (3.36) 

We observe that the order of the matrix [pll/rj^2l^j always 
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less tlian or equal to that of the matrix 

A oorresponding reduction in the numerical work results. 

W® auHjmarize below th© formulas for the basic integrals 

between the Laguerre functions. Detailed proofs for formulas 

and to be found in the Appendix, Sections 

B and G. 

(a) Kinetic energy integral. 

^ 5(q,q')S(m,in') 
nqm n'q'm' 

X ^ n ̂ n' (3.k3) 
ll.q+6 (.(n'+q+l)l(n«q-l)lj ' 

(b) One-oenter nuclear attraction integral. 

^^nqffi'"^/^'^n'q'a»^ " -2/(q+1)S(m,m»)5(q,q') 

^ (3-w ((n'+q+l)I(n-q-l)IJ 

(c) Two"oenter nuclear attraction Integral. Using 

(3*33) we writ® (3*38) in the matrix form 

nqm ' ' a' '^n' q' m' \ » / p 

X [ c^ (nq)J [B^^ ] [o^ . (n 'q ' ) ]  (3 . i f5 )  

This form differs from (3.38) slightly in that part of the 
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normalization factor for the Slater orbltals has been in­

corporated into the transformation matrix so that Cj^(nq) is 

now given by 

0 (nq) - (-1)^ (3,1^6) 
i {n-q-l-i)i(2q+2+l)m 

Her® 

B « ot ̂  2 c^(qffi,q'm») fD( i+j+q+q'+2+k, 
k ^ 

+ A(i+j+q+q'+l-k, (3.ii.7) 

with th© usual limits on k. Here <'(«2zR and /tf*2z'R. A is the 

distance froia th® origin to point a. The z-axia la along the 

lin© joining the origin and point a. 

(d) Electron repulsion integral* ¥e scale the integrals 

with respect to z^» that is, we let x®2Zg^r. Pxirther, we 

define «t«( i+v )/2 and ̂ «( v,+v,)/2, where v.«2w/z_, v =z /z„, 
C  D  u  D D ' a c C  a  

and v^*z^/zgj. Then (3*i^2) may be written 

X [Dj^{a,c)J[B^^J[D^(b,d)] (3.1}.8) 

where, from (3.35) and {3»36) 
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c^{ 

X {j (l+qa+q^-H-k,«r{ 

•*• J{ j+q|3+q(|+i-i£>̂ ii-»*qĝ +qQ+2+k,«{)J (3.14.9) 

Th« coefficients in the expansion (3«it.l) are given by 

D^(a,e) -
q„-̂ 3/2 ' 

(3.S0) 

D (bj,d) « v^^ 
%^3/Z 

h D d 

where C^^Ca) « Here i=0, 1, • . t^a+n^-qa-qQ-^ 

ani JaO, I, . . » nij+n^j+qjj-q^-S. 

5* Imnerloal solution of the eigenvalue problem 

The IBM 650 computer was prograuied to carry out all the 

principal computational processes involved in the one-center 

configuration Interaction calculations on the and 

molecules. A description of these routines will now be 

given. However, a detailed discussion of the inner workings 

of the routines will not be attempted here. The programs 

described, with instructions for using them, are available 

from the author upon request. 
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fh© UTiaerical calculations are conveniently divided 

into three relatively independent stagesj (i) evaluation 

of all required one and two electron integralss over a given 

set of basie functions, (ii) construction of the configu­

ration interaction nmtrix elementa between the various 

configurations from these basic integrals, and (lii) diago-

nalization of the configuration Interaction matrix. 

Two routines were required for the first stage of 

calculation, namely, a nuclear attraction integral routine 

and an electron repulsion integral routine. The kinetic 

energy integrals are easily calculated by hand. The 650 

routine for the nuclear attraction integrals is based 

direotl:^ on equation {3»kS)* The routine calculates, as 

a block, all possible integrals between any two given sets 

and q»] • • •» 

starting with the miniaum values of n and n' and 

proceeding to the laaximuiH values. Therefore, it is not 

possible to calculate a single integral (nq )l/rg^l n'q') 

without calculating all the integrals for lesser values of 

n and n'• In practice this is no limitation since the 

integrals usually required are t hose for the small values 

of n. There is no restriction on qj n, however, cannot 

be greater than q+lQ. Furthermore, there are no restrictions 

on o( aad pi in particular, the distance 1 can be reduced 

to zero without complications, in which case the 
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routine gives to ©iglit figure accuracy the same result as 

equation (3«i+4)» 

ka input th® routine requires only the e^'s, the C j[(nq), 

the values of c, q, qS and maximum values of n and n» • 

Although the aoeuracy depends on the size of the matrix 

multiplication, it is usually between seven and eight 

significant figures for all values of the parameters. In 

typical eases, the time required per Integral is about two 

seconds. 

The calculation of electron repulsion integrals is 

based on equations (3«I|-8-"50) • Because the process of matrix 

contraction in {3*48) Involves considerable differencing, 

it is necessary to use double precision floating point 

arithmetic throughout. This makes the calculations quite 

lengthyj for instance, more than forty-five minutes are 

required to calculate the 210 (ssjss) integrals for the set 

Is, . . ., 6s« Here, as in the nuclear attraction integral 

routine, there are no restrictions on<A,/3, or the q'a. The 

matrix [BijJ given by i3»k9) cannot exceed 20x20, The n 

quantum numbers are restricted accordingly. The c^'s are 

not computed by the routine. In fact, for large values of 

q, the calculation of these may prove to be the most difficult 

part of the whole calculation. 

In all cases, the accuracy of the integrals is at least 

nine significant digits for all values of the parameters. 
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This, of course, is an accuracy far beyond the immediate 

requirements of this investigation. 

For the second stage of the calculation, a program 

was constructed which compiled the configuration interaction 

matrix elements, using formulas {3«22) and (3»23)> from the 

basic one and two electron Integrals, This routine can be 

adapted to one-center calculations on (1) the spherically 

syaimetric component of any two-electron atomic or molecular 

system, (2) states of atoms, and (3) Z states of linear 

two-electron molecules such as Hg and linear The one 

and two electron integrals, along with suitable identifi­

cation, are loaded into the 650 in table form along with 

the configuration identification (in terms of the n and q 

quantum numbers of both functions). To construct a matrix 

element between any two configurations the program first 

carries out the various tests indicated in (3*22) and then 

obtains the required integrals using the Table Look Up 

feature of the 650. A special subroutine is required for 

the integral This subroutine, in general, is 

different for molecules with different nuclear configurations. 

The output of the routine is the ccmplete configuration 

interaction matrix in triangular form. 

The configuration interaction matrix was solved either 

for all the roots and vectors or just for the lowest root 

and vector alone, loutines for carrying out both of these 
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processes have been written for the 6^0 by Dr. Keith 

Howell. The routine for obtaining just the lowest root 

and vector is based on the well known power method. In 

this method an arbitrary trial vector xP is chosen and a 

new vector is computed by means of the matrix multipli­

cation Hx®«x^, this process is t hen repeated to give 

and is continued until xP'^^»cxP, that is, until the 

matrix multiplication yields a vector x^"^^ which differs 

from the preceding vector x® by only a constant factor. 

Then, except for normalization, x^ is the eigenvalue corre­

sponding to the eigenvalue c. It can be proved (38) that 

such a process converges on the dominant root (i.e., the 

one with greatest modulus) and corresponding dominant 

vector. (Note that we can easily make the lowest root of 

the matrix H the dominant root slmplj by adding a suitable 

negative constant to the diagonal elements.) The largest 

matrix that we have solved by this method is a 39x39. 

Starting from an initial trial vector (1, 0, . . . ), about 

two and one-half hours were required to obtain the eigen­

value stable to eight figures. A comparable time for a 

20x20 la about kS minutes. 

The routine for obtaining all roots and vectors uses 

the rotation method. In this method the eigenvalue problem 

is written in the form » 1, where H is the configuration 

interaction matrix whose eigenvalues are the elements of the 
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diagonal matrix E. Tli© vector corresponding to the 

eigenvalue Sj^ is the i-th Golunm of the matrix ?• The 

matrix ? Is obtained as the product of a number of siaple 

unitary transformation (rotation) matrices which 

successively reduce the i,J elements of the original matrix 

to zero. It can be shovxi that if this process is carried 

far enough, eventually all the off-diagonal elements 

will be reduced to zero. Moreover, the convergence can be 

shown to be quadratic. 

Throughout o\ir calculations we have mainly used the 

power method. This is because we have been concerned 

mostly with large matrices (i.e., greater than 20x20) and 

in this case the power method is more efficient by a factor 

of about one and one-half to two. For small matrices, 

however, the rotation method is more efficient than the power 

method. 

B. Eesults 

The results of the one-center calculations on the 

hydrogen molecule are stiwiarized in Tables 1-7. The data 

refer to the observed internuclear distance of 0.739S A 

or I.I4. a.u. Minimization of the energy with respect to the 

internuclear distance was not atteiii>ted in any ease. 

All energies given are total energies, that is, the sum 
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of the electronic and nuclear repulsion energies at the 

equilibrium distanoej no allowance has been made for zero 

point vibrational energy. Inclusion of this would mean 

adding about 0.01 a.u# to th© total energies given. The data 

are tabulated with respect to the parameters in the nuclear 

attraction integrals, that Is, where 2^ is the scale 

factor for the Iiaguerre functions with azimuthal quantum 

number q and 1 is the internuclear distance. 

No attempt has been made to give the expansion coef­

ficient® for all the various trial functions, since such a 

tabulation would be quite lengthy and serve little useful 

purpose^ The expansion coefficients have been given for 

only two functions, namely, the two best expansions obtained 

in this research (fables 6 and 7). 

We began our calculation by first solving the wave 

equation in the spherically averaged approximation. The 

results for configurations up to 6s^ are tabulated in Table 

1. Columns two to five in the table refer to expansions 

of 6, 10, 15, and 21 configurations, respectively. The trend 

in th® energy values shows clearly that with 21 configurations 

we have come very close to the limit to be obtained with a 

©rbitals only. The best energy obtained for a 21 term 

expansion was -1.01111.69 a.u, for a scale factor of 2.0711^29 

(parameter value of ZgRa2.9)* This is 89.0 per cent of the 

total energy and 25.7 per cent of the binding energy. Although 
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this ®n©rgy is still not as low as even the simple Heitler-

London-Suglwa result (-1.1160 a.u,)(Se© Table 8), it is 

nevertheless ppoaising that these relatively inappropriate 

spherical orbitals should provide as mueh binding as they do. 

Table 1. Total energy of the hydrogen molecule in the 
spherically averaged approximation for various 
numbers ©f (as) eonfigurations. Energj? in 
atomic units. 

Terms up terms up Terms up Terms up 

to 3a^ 'teo 5®^ 'fco 6s2 

l . l  -1.00621̂  -1.03095 

l.l^. -1.0l9i}.9 -I.0338I4. -l.0i|.091 -I.OU37 

1.7 -1.03160 -l.0lj.U6 -l.Oii.358 

1.8 -I.03i4.li4- -l.0lj^3i}. -l.Ol4.38l4. 

2mQ -1.037x5 .I»0l4.3l|.9 -l.Ol4.377 -1.0i|.390 

2.3 -1.037114. -l.0i|.328 -I.014.380 -1.0i^380 

2*6' -1.03343 -1.01^36 

2.9 -1.01808 -1.03668 -1.01^59 -1.0i^69 

3*2 -0.99398 -1.01}.363 •I.0i4i4i4.6 

3.5 -0.95585 -X.0i}.Oi4.7 -l.Ol1.37l4-

¥e next Investigated the effect of adding (sd^) eonfigu­

rations to the spherically syaroetric orbitals. Since 
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expansions in 21 fss) configurations do not gain enough 

in aoeuracy over expansions in 15 configurations to justify 

their additional complexity, in all subsequent oalculationa 

we limited ourselves to at most 15 (ss) terms (i.e., up to 

5s^)f fhe results obtained by adding 5 (ad©) and 15 (sd^) 

oonfigurations to the basie 15 (as) configurations are 

tabulated in fable 2 for a wide range of values of the s 

and d scale factors. For 30 configurations, the best 

energy obtained was •1.12250 a.u. {for Zgl*z^R*2,9), which 

is now better than the Heitler-London-Sugiura result but 

still less than the SCF result (-1.13ii. a.u,)« Thus, using 

only s and d orbitals, we have accounted for 95*6 per cent 

of the total energy and 70.if per cent of the binding energy. 

Somparison of the results for 5 (s<i«) and 15 (sd ) terms a o 

indicates that the liMiting value of the energy that can 

be obtained with (ss) and (sd^) terms only is close to this 

best value. 

In Chapter II we reviewed previous calculations by the 

one-center method and pointed out that Huzinaga (1) and 

Handler (2) have both carried out one-center expansions 

for H2 based on s and d orbitals only. We pointed out 

further that the best result reported by Huzinaga, -1,1397 

a.u, for two s and one d orbital, was no doubt in error* 

This value is clearly not consistent with the data in Table 

2. However, Handler's result, •1,0878 a.u. for three (ss) 



www.manaraa.com

$2 

Table 2, Total energy of th© hydrogen molecule using 
(as) and (sd^^) configurations. Energy in 
atoiaio units. 

ZgR z^M 15'(8S) 4- ${sdo)® I5(ss) + 

1.7 1.7 -1.06î 58 

2,0 2.0 -1.07606 

2.3 2.3 -1.08771 

2.6 2.6 -1.09889 -1.12126 

2.9 2.9 -1.10830 -1.12250 

3.2 3.2 -I.lll4.59 

3.5 3.5 -1.11660 -1.11930 

l.î  2.1 -1.0770© 

1.7 2.55 -1.0963ii. 

2.0 3.0 -1.10958 

2.3 3.î 5 -1.11773 

2.6 3.9 -1.12116 -1.12137 

2.9 k.3$ -1.12017 

l.k 2.8 -1.10121 

1.7 3.k -1.11676 -1.12059 

2.0 4.0 -1.12039 -1.12060 

®is^, ls2s, • . 5s2, ls3d^j, 2s3dg,, ...» 583d^. 

^Is^j ls2s, * m m$ Ss^» ls3dQ, • • *, 5s3d^» • 

• •» Ss^dg. 
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TabXe 2. {Continued) 

I5(ss) 4. 5Ud^)® 15(s8) *•» I5{sd^)^ 

2.3 i|..6 -1.12109 

2.6 5.2 -1.10896 

1.1 3.3 -1.10035 

U7 5.1 -1.10953 -1.12102 

2.0 6.0 -l,09kB7 -1.12112 

2.3 6.8 î.osoaii. -1.1202ii. 

l,k 5.6 -1.09790 -1.12101 

1.7 6.8 -1.08191 -1.12001 

2.0 8.0 -I.O67I4.O -1.11776 

2.3 9.2 -1.05787 -!• 1131̂ 5 

and tlir®e (s4Q) configurations, Is in essential agreement 

with, our results, although his energy ralue la low due to 

a poor choice of seal© factor (2g=z^*1.071i4.), In order to 

remove this discrepancy, and as a further check on our 

own calculations, w© have repeated the final stage of 

Huzinaga's calculation in its entirety. 

For his final approximation, Huzinaga used the three 

term expansion 
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* {s3̂ C1)+0,25S|̂ (1)}{S3_(2)+0.2SS|̂ (2)} 

« {s^(l)+0.25s^(l)} d^(2) 

+ d̂ {l) {ŝ (2)+0.25ŝ (2)} 

wh©jf© the orbitals ^j^qq* 

normalized Slater orbitals (3*10) centered midway between 

th© nuclei, lote that the s, and s, are not orthogonal and 
1 k 

that the secular equation in this case is 

det ( H. - ES ) » 0 (3.52) 
ij ij 

where and 

Carrying through this calculation^, one obtains an energy 

of -1.106 a.u., which is considerably above the value -1.1397 

a.u. reported by Huzinaga. We further cheeked this result 

by carrying out th© calculation based on the six configura­

tions ®l%» ®l^i4.' six term 

expansion must of course give a lower energy value than th® 

three term expansion (3.51-). The value obtained was -1.109 
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a,u. W@ conclude that Huzlnaga's result must be in error. 

W© next in^restigated th© effect of adding the axially 

a^fflmetrl© functions p^, ̂ o' ®0' ̂ O' ̂ 0' ® 

and basil functions. From these eight types of functions 

we ©an construct a total of twenty-fotir different types 

t 4» 
ot 21 eonfigurations. Of these only a few will be 

important in lowering the energy. We can estimate which 

ones will be important by comparing the values of the 

squares of the matrix elements between these states and the 

(ss) states with the difference in the corresponding 

diagonal energies. That is, the quantity j) 

ts a rough measure of the importance of the state in 

lowering the energy. Her© may be either a solution of 

the configuration interaction problem prior to th© addition 

of th© state (bordered determinant approximationj se© 

Oondon and Shortley, p. i|.Q) or simply the state with lowest 

diagonal energy. Only if th© interaction matrix elements 

are fairly large, and if the difference between the dia­

gonal energies is not too great, will the added state 

appreciably lower the energy. For example, states such as 

(sg^), (si^), and (sn^) interact with (ss) states only 

through the nuclear attraction operator. We expect these 

states to be important since integrals over the nuclear 

attraction operator can be made quite large by a proper 

choice of the g^, i^, and n^ scale factors. Of coiirse, th© 

scale factor which maximizes th© matrix element may 
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also raise Ijj to a prohibitively large value so that there 

is a point past which further raises in the scale factor 

Mill be detrimental. On the other hand, states such as 

(gjjg©) have small or zero matrix elements 

with (ss) states since the coupling here is by means of the 

electron repulsion operator. The integrals for this operator 

usually have much smller values than the nuclear attraction 

integrals and are also less sensitive to scale factor 

variations. Hence, states of this type are not expected to 

be very iaportant. An apparent exception is the state (PQPQ) 

which turns out to be of major iMportancej this is no doubt 

due to the fact that in this case the electron repulsion 

integrals (sPQIsp^^) have fairly large values. 

We have therefore examined only the following types of 

configurations! CPoPq) » (pQf'o)» t 

and (sn^). fhe relative importance of each of these types 

in lowering the energy may be seen from Table 3. lach 

type of state was tested only against the (ss) and (sd^) 

configtirations. Strictly, a term should be tested in 

combination with all other terms. It is a general charac­

teristic of variational calculations, however, that the 

improvement obtainable from any given term becomes pro­

gressively less Important as the number of other terms is 

increased, fhls is especially so if the maximum improve­

ment attainable is small. Moreover, we are justified in 
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Table 3. Summary of tli® contributions to the energy for 
various kinds of configurations when added to an 
expansion consisting of 15 (ss) and 1$ (sd^) terms. 

z R  
8  

z  R  
q  

z  , R  q» 

Number 
of (qq') 
added 

Energy® 
(a.u.) (a.u.) 

2.9 2.9 2,9 2,9 10(PoPo>° -I.I38I+8X -0.01598 

3.5 3.5 3.5 3.5 -I.I355IX -0.01621 

1.7 3.1+ 1 . 7  1.7 H  -1.13602 -0,01514.3 

2.0 I4..0 2.0 2.0 r i  -1.13612 -0.01557 

2.3 I4..6 2.3 2.3 f t  -1,13666 -0.01557 

1.7 3.k 3.1̂ . 3.k R -1.1361̂ .5x -0.01586 

2.0 k 'O i l - . O  i}..0 H -1.1363lj. -0.0l57l|. 

2.3 6 I}.. 6 I1..6 M -1.13605 -0.0114.96 

2.0 I4..0 3.0 3.0 « -1.13559X -0.01l|.99 

2.0 i ^ - . O  2.0 2.0 5{sg^)® -1.123311- - O . O O 2 7 I 4 -

Total energy for an expansion consisting of 15 (ss), 
15 {sd^), and I Tqq') configurations. The letter "x" follow­
ing an entry indicates that the value given is the lowest 
root of the approximate matrix constructed by considering the 
solution of the I5(ss)+l5(sd ) problem as a single config­
uration. 

Difference between the energy values for the 15(ss)+ 
l5(sdQ)+l(qq') and 15{ss)+l5(sd^) problems. The energies for 
th® latter are given in Table 2. 

2 
°A11 terms up to 5p • 

J 2 
'̂ All terms up to i}.p . 

®ls5go, 2s5go, . . 5s5go 
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Table 3« (Continued) 

iiuiED6r a 

S" V (a!u!T 

lumber gb 

added (a-^.) (a.u.) 

2.0 l̂ -.O 2.0 6.0 5{sg^)® -1.12867 -0,00807 

2.0 k»o 2.0 8.0 B -1.13087 -0.01018 

2.0 k*0 2.0 10.0 H -1.12885 -0.00825 

2.9 2»9 2.9 2.9 9(sg 
o 

-1.12557X -0,00307 

2.9 2.9 2.9 8.7 R -1.13286X -0.01036 

3.5 3.5 3.5 3.5 W -1.12636* -0.00706 

3.5 3.5 3.5 10.5 « -1.12978* -0.0101̂ 8 

2.9 2.9 2.9 5.8 9(si^)g 
o 

-1.12360X -0,00110 

2.9 2.9 2.9 8.7 « -l.12it.5lx -0.00201 

2.9 2.9 2.9 11.6 n -1.12ltl̂ x -0.00192 

2.9 2.9 2.9 li}..5 It -l.12ii.60x -0.00210 

2.9 2.9 2.9 8.7 9(slo)'' -1.12285X -0.00035 

2.9 2.9 2.9 11.6 R -1.12309X -0.00059 

2.9 2.9 2.9 ll|.5 tt -1.12309X -0,00059 

2.9 2.9 2.9 11.6 9(sn̂ )̂  -1.1226ipc -O.OOOlit. 

3s5gQ, ls6g^, . . • » 3a7gjj. 

ei»7lo, 2s7io' 3®7io' I®8i0» • • • * 3891^. 

^la91o. 2091̂ , 3s91̂ , 0 IslOl , . 
w • * t 3®1HQ. 

^Islln , 2slin , 3slln , lsl2n , , » 3sl3n^ • 
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Table 3* (Oontlnued) 

z B 
s 

z^R 
U 

z R 
q 

z ,H 
q' 

lufflber 
of (qq') 
added 

Energy® 
(a.u.) (a.u.) 

2.9 2.9 2.9 il|..5 9(sn^)^ -1.12273X -0.00023 

2.9 2.9 2.9 17.14- n '1,2213x -0.00023 

2.0 i|..0 I4..O 0 0 
-1.12089 -0.00029 

2.9 2.9 2.9 2.9 n -1.12277X -0.00027 

2.9 2.9 2.9 2.9 -l.I226IX -0.00011 

3*5 3.5 3.5 3.5 n -I.II9I+.3X -0.00011+ 

%©rms up to 

'̂ SPQIiX̂ , ̂ PQ̂ O' ̂ PQ̂ O' * • •' ̂ PQ̂ Ô* 

rejecting any terms which at any stage in the building up of 

our wave function are found to produce a negligible improve­

ment in the energy. 

Each of these types of configurations contains a scale 

factor which should in principle be determined by the con­

figuration interaction. This is too laborious to be feasible, 

however* The procedure adopted here was to determine the 

scale factor for each type of state by first taking that set 

of (as) and (sd^) configurations which gives the best energy 

contribution, freezing the s and d scale factors, and then 

adding the new set of states and minimizing the energy by 
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trial and error with respect to the new scale factor. This 

procedure, of course, neglects anjr coupling that may exist 

between the scale factors for the various kinds of states. 

It assumes that the best s scale factor when only (ss) and 

(sd^) terms are present is the same as the best s scale 

factor when only (ss) terms are used, and that the best s 

and d scale factor combination obtained using (ss) and 

(sd ) terms only will hold when additional states are added, 
o 

and so on as more types of states are added. That this is 

in fact the case can be seen from Tables 1 and 2. The 

m&ximxm (sd^) contribution occurs for the same s parameter 

value, that is, 2;gl«ẑ Ra2,9. 

Instead of carrying out a complete variation calcu­

lation wherein the coefficients of all terms are allowed to 

vary, we can consider the best (ss) plus (sd^) expansion as 

a single state and vary only the coefficients of the added 

terms. Values in Table 3 followed by the letter "x" were 

determined by just such an approximate procedure. As can 

be seen from Table I4., the overall accuracy of this approxi­

mation is high. In addition, the reduction in the amount of 

calculation is considerable. 

Two final calculations were carried out. In the first 

calculation a configuration interaction was set up using as 

a basis a selected set of 38 axially symmetric configurations 

shown from the data in Table 3 to be most effective in low-
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Tabl® 14., dompai-ison of energy values obtained using tho 
complete and appjE-oxiaate variational treat­
ments. Energy in atomic units. 

Z„1 z^R 
Energy using 15 (as) and 5 (sd^) terms 

Z„1 z^R 
20 terms® 6 terras^ E® 

2,0 2.0 -1.07606 -1.07590 -0.00016 

2,6 2.6 -1.09689 -1.09833 -0.00056 

2.9 2.9 -I.I0830 -1.10717 -0.00113 

3.5 3.5 -1.11660 -l.U51̂ -0 -0.00120 

1.7 3»k -1.11676 -1.11553 -0.00123 

2.0 k>o -1.12039 -1.11887 -0.00152 

2,0 6.0 -1.09i|-87 -1.09393 -0,0009lf 

1.7 6.8 -I.O819I -1.08133 -0.00058 

Is f ls2sf • » »t l®3dQf 2s3d^> • • »f 

/̂̂ (1,2), ls3d̂ » 2s3d̂ , ...» 5s3d̂ , where /((1,2) is the 

result of a calculation based on the l5(ss) terms of footnote 

a. 

®Mfference between the energy values for the 20 term and 
the 6 term expansions. 

ering the energy. In the second calculation, angular 

dependence was introduced into the wave function in the form 

of 6 (PiP^i) configuration. The results of these two calcu­

lations are tabulated in Table 5* 

As can be seen from Table 3» the maximum contributions 
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Table 5* Flaal approximation to the energy and wave 
function of the hydrogen molecule. 

ferms and parameters 
Energy 
(a.u.) 

Terms 
added 

Energy 
contri­
bution 
(a aU. ) 

I5(ss)j Zgl«2,9 

I5(ss), I5(8<ijj)i ssjjl«ẑ l»2.9. 

-1,01459 

-1.12250 
(•do) -0.07791 

15(88), I5(»d̂ )» 9(sĝ )j 

ZgH«2̂ 1*2.9, «gB«8.7. -1.13286 
(.g„) -0.01036 

ll(9i), laCsig), 6(sg^), 3{si^){ 

!Sgls«2^H»2,9» Zgl«8,7, ZJL1®11*6. -1.131k85 
("V -0.00199 

ilUa)* 12(sd^), 6(sg^), 3(sig), 

6(PQPQ)| 2gl»ẑ l«zpl«2.9# 2gS« 

8*7J Zj|^l»11.6. Coefficients 

in Table 6. -1,15086 
'PoPo' -0.01601 

ll(as), 12(sd^), 6(sg^), 3{sio), 

6(POPQ), ^(PJ^P^J )̂} ZgR«ẑ M« 

ZpR«2.9, ZgH«8.7# Z3̂ R»11.6. 

Coefficients in Table 7» -1.161i|.l 
'PlP-x' -0.01055 

Experimental energy. -1.171̂ .0 

to the energy for the various types of configurations 

arranged in order of importance, ares -0,01598 (p^p^), 

-0.01036 (sgg)# -0.00210 (sl̂ ), -0.00059 (slg), -0.00027 
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-0,00023 (»n ), and -0.000X1 {p«f«). The last four O Q 0 O w 

types of states contribute a negligible amount to the energy 

and may be neglected, fhe configurations used for the 38-

term function were obtained as follows: the best expansion 

in 15 (ss), 15 (sd^j), and 9 (sgg,) was reduced to a 29-term 

expansion with a completely negligible effect on the energy, 

by dropping those configurations entering with very small 

coefficients. To this 29-term expansion were added first 3 

(si) configurations and then 6 (p p ) configurations. The 
o o 

resulting 38-term function, which represents the best 

function without angular dependence obtained in this investi­

gation, gave an energy of -1.15086 a.u., which is 98.0 of 

the total energy and 86,7 per cent of the binding energy. 

The coefficients for this 38"'terra function are given in 

Table 6. 

This 38-tem expansion was then considered as a single 

state and the 6 configurations added. The energy 

obtained was -<1.1611^1 a*u,, which differs from the experi­

mental value by only 0,0126 a.u. Coefficients for this 

terra function are given in Table 7. 

Gm Diseussion 

In Table 8 we have listed some of the more important 

investigations of the hydrogen molecule, with a brief 

description and reference for each, along with the results 
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fable 6, Ejtpansion coefficients for 38-term function using 
axially sjBBaetric configurations only. 

Configuration Coefficient Configuration Coefficient 

Isls 0.660071 -0.00lj.77 9 

ls2s -0.622753 l85d 
0 

0,027305 

2B28 0.21̂ 7810 2.Sa„ -0.020325 

1838 0.225707 3»Sd„ 0.006567 

2s3a -0.098062 l»Sg^ 0.020912 

l8l|.S -O.O99OI4.Q 2«Sgo -0.011|208 

2si4.s 0.051885 3»SE^ 0.001|.793 

3slj.s -0,005623 X»6g^ -0.001511 

ls5s G.O37O6I 1.7ĝ  -0.003092 

2s5s -0.021802 2«7gj, 0.0021̂ 7 

3s5s 0,006392 -0.093577 

ls3d^ 0.1331511. 0.031ij.03 

283̂  ̂ -O.O8I1.88O -O.OI53I6 

3a3a« o 0.029565 0.005632 

-0.013if09 P̂o'̂ Po 0.002098 

S.3a„ 0.0050i|.0 '̂ Po'̂ Po -0.0032J+5 

0.031̂ 217 1.71„ 0.006366 

2sl(.d -0.027065 2»71o 0.00101.38 

3si|.d 0,013578 0.001610 

^S®© Table 5 for parameter values. 
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Table *?• Expansion coefficients for i4J4.-term function with 
angular dependence.® 

Configuration Coefficient 

0.997723 

0.061552 

-0.023301 

3Px3P.I 0.01I4.052 

-0.002318 

"Q.QQZk^k 

0.003056 

®Se© Table 5 parameter values* 

V(i ,2) equals the 3B»term function given in Table 6» 

for our 38-term axiallj symmetric function and our i|l+-term 

function with angular dependence. As can be seen, the 

energy result for the i|J4.-term function is better than all 

previous result s on hydrogen, except that of James and 

Goolidge (39)• These latter workers, of course, have 

obtained essentially complete agreement with experiment, 

using a convergent expansion in elliptical coordinates and 

the inter electronic distance r^^g. James and Goolidge also 

investigated the case in which r-j^g omitted from the 

wave function. They found that in this case it was not 
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fabl© 8, A nmabsr of investigations on th© wave function 
and total energy of the hydrogen molecule. 

Besoriptlon toergy Refer-
(a»u.} ence 

Ooulson (on® config. MO"IiCAO) -1.1275 

Goulson Cone oonfig. SCF) -Ul3k kS 

Heitler-Lonion-Sugiura a(X)b{2) + a(2)b(l) -1.118 i^6,l|.7 

Wang (H-I4, soale factor) -1.139 i|.8 

Rosen (H-I., scale factor, polarlEation) -1.114-85 I4.9 

Weinbaum (1-1., plus ionic, soal© factor, 
polarization) -1,151 50 

Surn««-Mage© (I-L, seal® factor, polarization 
using off-center orbitals) -1,152 k3 

Inui (scale factor, polarization) -1.114-8 51 

Mueller and Eyring (scale factor, 
polarizationj semilocalized) -l.l5i^ 52 

Callen (variational MO—two config.) -I.1516 53 

Wallis and Hulburt (diatomic MO—two oonfig.) -I.135I1. 5i^ 

Callen (variational MO—two config.) -1.1571 53 

James and Soolidge (without -1.1577 39 

lagstrom (one-center, 38-terin function, n® 
angular dependence) -1.1509 

lirschfelder and Linnett (H-L plus ionic, 
soale factor, angular correlation) -1.156 kl 

James and Coolidge (with r^^g^ -1.1735 39 

Hagstrom (one-center, lj4-terffl function, 
angular correlation) -1.161 

Ixperiaental -1.17ij-
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possible to obtain an ®nepg;y better than -I»l577 a-u. The 

differeno© between this value and experiment, -•0.0163 a.u,, 

is the angular correlation energy. Angular correlation has 

to do with the correlation in th@ spatial positions of the 

©lectrons on opposite sides of a plane passing through th® 

bond axis. The us© of th© r|_2 coordinate is a direct way 

of bringing angular correlation into th© wave function. As 

has been shown by Green ©t al. (it-O), however, configurations 

with angular dependence serve exactly the same function as 

th© rj^2 terms. Prom fable 5 we see that the energ;^ contri­

bution of the angular terms (p̂ p̂ ;̂ ) is -0.01055 a.u. or 

6k.*7 P®r cent af th© total angular correlation energy. 

Th® onl;^ other calculation listed in Table 8 which 

involves angular dependence in the wave function and which 

may properly be compared with our result using the i4i|.-terai 

function is that of Hirschfelder and Linnett (I4.I). Thes® 

workers used a wave ftinction of the Heitler-London plus 

ionic form and in addition included 2p_, 2p , and 2p 
J z 

orbltals on each of th© hydrogen nuclei. Our best result, 

however, is considerably better than the Hirsc.hfelder and 

Linnett result. 

On the other hand, th© calculated energj' for the 38-term 

axially syiimetric function is inferior to the energy results 

for several of the calculations listed in fable 6, in par­

ticular, the calculations of Melnbatam C50), Gurnee and 
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Mag®© Mueller and Ejrxng (52), Callen (53) (two and three 

configuration cases), and James and Ooolidge without ri2 (39). 

All of these oalcttlatlons are based only on axially sjiranetric 

wa'^'e functions and Involve no angular correlation. The error 

In our 36-term function is given as the difference between the 

James and Goolidg® without ̂ 12 valwe and our value, that is, 

-I.I577 - (-I.I509) = -0,0068 a.u,, or 0,250 electron volts. 

This amount of energy must then reside in axially sym­

metric terms which have not been taken into account in our 

36-term wave function. It will be recalled, however, that 

in constructing this function we were careful to include 

all terms contributing to th© energy in the third decimal 

place and also Included many terms contributing only in the 

fourth decimal place. Individually, the terms neglected are 

not expected to be important; collectively, however, their 

effect may be considerable. We can estimate the effect of 

the terms omitted as follows? Of the various types of 

configurations in Table 3, onlj- (sl^), (sn^), (dgd^), and 

(Pofo) were not taken into account. These contribute a 

maximum of -.0,00059, -0,00023, -0,0002?, and -0.000II, 

respectively, and if w© consider these effects to be addi­

tive we can estimate the maximum improvement to be gained 

•hj including these fmctions as -0,00120 a,u,, which leads 

to an estimated energy of -1,1523 a.u, for axiallj symtnetric 

terras only. Terms such as (fQf^)# * etc,, which were 
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not investigated here, ajpe expected to contribute at most 

one or two in the fourth decimal place. Further minor con­

tributions, of coarae, will come from including more (ss) 

and (sdg) configurations. 

On the basis of the above, and on other considerations, 

we have estimated that with an expansion of 50 axially sym­

metric configurations and with a more judicious choice of 

the scale factors the best energy obtainable would be about 

-l.l^ii-O a.u,, which means an error of about 0,1 electron 

volt, fhe work required to achieve such an accuracy would, 

however, be considerable. 

There is good reason to believe that almost all of the 

remaining angular correlation could be accounted for by 

inclusion of angular terms such as and (d2d__2)* 

Convergence problems such as those affecting the axially 

symmetric part of the wave function are not expected to 

be important here. It is interesting to note that the 

angular correlation in hydrogen is almost two-thirds of 

the angular correlation in the heliuai atom, wh;ich is 

-0,021174 according to Lbwdin and Shull (23). 

The alow convergence which characterizes our one-

center expansions Is attributable essentially to tii© fact 

that it is extremely difficult to represent the wave 

function accurately in the iraaediate region of the miclei 

with only a limited number of terms in the expansion. The 
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actual wave function is "peaked" at the nucleus, while 

th® one-center wave function is rounded there. One may 

attempt to argue that this is not too great an objection 

since, as has been shown by Eckart (i|.2), if the energy 

error is small, the error in the wave function itself will 

be of th© order of the square root of the error in the 

energy. One may further attempt to argue that the portion 

of configuration space around the nuclei is such a small 

part of the whole that the error must be negligible. A 

direct estimate of this effect may be found from the work 

of Surnee and Magee These investigators used a 

wave function of the Heltier-London type, but offset the 

orbital centers a distance x from the nuclei. Thus, they 

wrote the wave function (not normalized)! 

f(r^,r2) » ls^(l)ls^{2) + Is^(2)ls^(I), (3.53) 

where Is^ represents a Is atomic orbital, not at the 

nucleus a, but displaced a distance x away from nucleus 

a toward nucleus b. When the energy was minimized with 

respect to both the scale factor and the distance, a total 

energy of -1,152 a.u. was obtained for an Internuclear 

distance of l.i|.5 a.u. These off®center orbltals, of course, 

do not "fit" the wave function at the nucleus. Hence, the 

energy value provided by this calculation represents a lower 
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limit to th® laaximum energy attainable using wave functiona 

wMeh do not Tit" at th© nueleus. Although the Gurnee-

Mage© result is remarkably good considering the simple nature 

©f the wave function, the energy error for this function is 

by no means negligible. ¥e notice that our estimated result 

for just the axially symaetric teriaa is slightly better than 

the (Jurnee-Magee result. 

Throughout our calculation the internuclear distance was 

held fixed at l.li. a.u. It is easy to show that a small change 

in this distance will not affect the energy appreciably 

and will in general not account for the observed energy 

discrepancy. Consider the following qualitative argiiment. 

In the region of the equilibrium Internuclear distance 

the potential energy curve is given by where x is 

the displacement from the equilibritm position and 

is the force constant for the vibration of a particle of 

mass m with a frequency of v. If we assume that the one-

center method is capable of giving the vibrational fre-
»! 

quency of hydrogen (i|.3f5 ©ra ) to within 30 P«r cent either 

way of its actual value, then, for a displacement of x* 

0.2 a.u., for v«55O0 cm**̂ , 1«0.0029, while for v«3000 c«"̂ , 

E®0.0008. Hence we see that even a displacement of 0.2 

a.u. would account for at most only fifty per cent of the 

observed energy discrepancy. 

Once we fully realized that an adequate representation 
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of the ajElally iymiaetric part of our one-center function 

could not be mad© in ter»s of (as), (sd^), (agg)» and 

(p terms only, we decided to inTeatigate the convergence 
O 0 

properties of expansions of toown wave functions for Hg in 

terms ©f our one-center orbitals. In this way we hoped 

to gain ao»e idea of the overall rate of convergence of a 

one-center expansion as well as determine the importance 

to the final energy of terms oecurring in the wave function 

with only very aaall coefficients. 

fhe function expanded was the Gurnee and Magee function 

{3*53)• Five a, four p„, four d , one f , and one g 
O O Q O 

Laguerre function were used, for which the parameter# were 

and z 1«8.0, In order to expand 
t 

i3»$3) we first expanded a single Is^^ orbital with the scale 

factor z^l.lSS and located a distance 0.69 a.u. along the 

bond axis from the expansion center. The internuclear 

distance was taken as l.l^O a.u. With these values of the 

parameters, (3»53) gives an energy of -1.151 a.u. according 

to the data of Ournee and Magee. The expansion is straight­

forward. Thus, 

K ' s(nq) 

S(nq) - jla; dv = dv (3.SW 
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wlier® ¥® have expressed in terms of the normalized Slater 

funotions using equation (3.11). Th« overlap integrals 

S(nq) ¥©r@ evaluated in alllptical coordinates in the usual 

way. This expression for Is^ and a corresponding expression 

for Is^, but with the signs of the p^ and f^ terms reversed, 

was then inserted in (3.53) to give the final one-center ex­

pansion. In this expansion only the most important terms 

were retained. In the form finally adopted, the overlap with 

(3.53) was 0.9989. fhe calculated energies for this ex­

pansion at various stages of truncation were; I5(ss), 

-1.0325 (-l.OUf), I5(ss)-t.l5(sd^), -1.1108 (-1.1206), 

15(ss)4.15(sdQ)->.6(.pQPQ), -1.1270 (-1.1361), and 15(ss)-i-

15(sd^)+6(p^Po)45(sgo), -1 .1370 (-1.111.62). The quantities 

in parentheses are the energies obtained in a one-oenter 

configuration interaction calculation using the same number 

and kinds of coni'igtiratlons,. and also the same param.eters 

Although the expansion of (3.53) is complete to within 0.1 

per cent as measured by the overlap, the computed energy is 

in error by 1.2 per cent. • 

The difficulty can be seen from Figure 1, where we 

coMpare the values along the bond axis of the floating MO 

M(ls^4-Is^) with its one-center expansion A floating MO 

is here a molecular orbital of the LOAD type but with 

the atomic orbitals allowed to "float" along the bond axis. 

With such an orbital Hurley (55) recently obtained essentially 
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for H2 
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th® SOP enefgy for H^. The overlap of ̂  with the floating 

MG is 0«99982, 

Following Shull and Lbwdin (56,23) we have also derived 

th© approximate natural spin orbitals for the 38-terra 

function of fable 6. These authors have shown that the 

total space function 

^^Crnjrp) *21 G (3»55) 1' 2 mn mn n 

for a singlet state of a two electron system is equivalent 

to a quadratic form having a certain rank r and signature 

s and that this quadratic form oan be reduced to the dia­

gonal form 

^$(r, ,r3) -  (3.56) 

by a suitable nonslngular linear transformation. The rank 

of the quadratic form is defined as the rank of the deter­

minant of its ooeffiolents, det. The X'®» which are 

given as linear combinations of the d 's, are the so-called 
n 

"•natural spin orbitals" which diagonalize the first-order 

density matrlJE. The "natural expansion" (3#56) was shown 

to have certain properties of maximum convergency. First, 

the natural expansion Is characterized by having the most 

rapid convergence of all superpositions of configuratlona 
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d®soribing the same wave function. Second, if the natural 

expansion is interrupted after r terms, and then renormal-

iaed, the resulting function represents the best approxi­

mation of rank r, i.e., the function of rank r having the 

s m a l l e s t  q u a d r a t i c  d e v i a t i o n  f r o m  ̂ ( t h i s  i s  s o  

whether the expansion is exact or only approximate). 

Numbering the natural orbitals in order of decreasing 

values of ©^, the "best" wave function of rank r then has 

the form 

-  Z  c ( X % ) / ( i c f ) *  ( 3 . S 7 )  
1 2 k k k k«l ̂  

2 where c^ »ay be interpreted as the "occupation number" 

n, of the natural orbitals X, . Here ''best" must be inter-
K K 

preted as best in the sense of laaximua overlap, not in the 

sense of energy values obtained. It was further shown that 

the first natural orbital should approximate very closely 

the SOf function, although the two functions cannot be 

Identical since they are obtained by linear and nonlinear 

processes, respectively. Galculations on He (23) indicate 

a close correspondence between the two functions, however. 

In Table 9 we have listed the occupation numbers and 

the natural orbitals (k*l, . . .,5) for the 38-teriii 

expansion of fable 6. fhe method of constructing the 

natural orbitals is discussed in reference (23) and will 
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Table Natural spin orbltals for 38-term expansion in 
fable 6. 

Orbital Coefficient Coefficient Coefficient 

Is 
X/ 

0.821+27 8 O.I+7fl25 -0.129650 

2s -0.5l8ii.21 0.517750 0,014.3830 

3s 0a720ij.l -0.672514.6 0,008114.2 

ks -0.079177 0.202931 -0,071̂ 808 

5s 0.030995 -0.026390 0.05079I1. 

3d Oai3986 0.036505 0.918838 

kd 0.0320x0 0.090I6I 0.214.3081 

5d 0.02i|.336 0.022130 O.2O6I4.37 

5g 0.018108 0•006968 0.155387 

% -0•000887 0,008314.8 -O.OO92I4.O 

7s -0*002718 0,00214.11 -0,023958 

71 0.005573 0.003972 0.01̂ 714.80 

0.9929iâ  -O.O6IO83 -O.Oll4.99l4. 

n 0.985938 0.003731 0.000225 

2p 0.966503 0.229370 

3p -O.25i4.lll 0.918208 

-0.0360%5 -0.322931 

Vn -0.09956ii. -0.010291 

a 0,009913 0.000106 
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not be given here. Using (3.57), the energies for various 

oombinations of the natural orbitals were then computed. 

The energy 0^X3^ was found to be -1.11625 a.u., that of 

^•^1^1 -1.13201 a.u., that of -

Vn2X|)/{nĵ +n3)̂ , -!• 1341-6 a.u., that of ' 

-1.14930 a.u, as compared with the exact 

value -1.15086 a.u.^^ fhe rapid convergence of the natural 

expansion is well Illustrated by these results, particularly 

by the last case where, with only three terms, we have ob­

tained ©ssentitlly all of the energy. Inclusion of and 

in the natural expansion would secure virtually all of the 

missing energy. The remaining natural orbitals enter with 

such swall occupation numbers as to be of negligible iiapor-

tance as far as the energy is concerned. 

fhe reduction in th© over-all complexity of the 38-term 

function provided by the natural orbitals is indeed striking. 

Th© importance of the orbitals Xi» ^2* ^3 lowering the 

energy can b© adequately rationalized in terms of electron 

•̂ "In calculating these energies it was necessarj' to 
neglect those states (such as d^dg, d^gQ, etc.) vh ich were 
also neglected in the original configuration interaction, 
since the integrals arising from these states were not 
available and to have calculated them wcwld have required a 
prohibitive amount ©f additional labor. In any case, these 
states are not expected to be important and th© errors incur­
red by neglecting them will be small, probably no more than 
0.002 a.u. for and much less for the other expansions. 
Frcm a coaiputatlonal point of view, then, it appears that the 
simplifications Introduced by the natural orbitals are more 
apparent than real. This point does not seem to hive been 
adequately ©mphasiEed l.n th© literature to date. 
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correlation effects. A detailed discussion of electron corre­

lation in the hydrogen molecule will not be attempted her®, 

howtfer, since it is a rathsr invol-e^ed subject and would, 

moreover, be beside the point of the present discussion. But 

see Callen (53) or Lennsrd-Jones (57) for discussions of the 

relation between configuration interaction and electron cor­

relation as they apply to the hydrogen molecule. 

A Qoiaparison of and the SCF function of Gouleon dis­

closes the essential deficiency in our one-center function. 

In B'igure 2 we have plotted th© values siong the molecular 

axis of these two functions. The floating MO function of 

Pigui*© 1 is also included for comparison sake. Although the 

agreament between X|_ and the SCF function is good at large 

distances from the expansion center, in the region of the 

nuclei the agreement is especially poor. On the other hand, 

when the i?aLuea at points along the perpendicular to the axis 

at the origin were compared, th© agreement was found to be 
p 

®xc#ll®t» M© note aim that the energy of Xi (-1.115 a.u.) 

is only a poor approximation to the SGF energy (~l,13ij. a.u.). 

This disparity between Xx the SGF function, wliich is con­

fined predominantly to the region around the nuclei, strongly 

aiggests that a similar discrepancy exists between the 38-

term function and the true wave function since, if the one-

center expansion were only complete, Xx uld approximate the 

SGF function with a much greater accuracy than at present, 

namely, to at least as high an accuracy as the floating MO 
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function, wMeh may "be regarded as the first natural orbital 

in th© reduction of the Gurnee-Magee function (3.53) to 

natural form. 

That the observed error and ̂  ow convergence in the energy 

can be accounted for on this basis can be seen directly from a 

point by point comparison of our final one-center approximation 

{the 1^-term function th coefficients In Table 7) with the 

best Jaaes and Coolidg© wave function (the 13-term function 

given in the last column of Table II in reference (39)). Table 

10 shows vd u@s of these two functions for various positions of 

the electrons along the bond axis (measured from nucleus a 

towards nucleus b). Since the estimated accuracy of the James 

and Goolidge function is about three per cent, the discrep­

ancies between the two functions are a rough indication of the 

Table 10. Comparison of the best James and Goolidge function 
with the final l}J|.-terra one-center function. 

^la ^2a One-center James and Goolidge 

0.6 0.8 0.1382 0.1131 

O.S 0.9 0.1925 0.12i4.8 

0.i|. 1.0 0.219i|. O.lij.03 

0.3 1.1 0.2300 0.1600 

0.2 1.2 0.2096 0.1639 

0.1 1.3 0,17Sk 0.2122 

0.0 l.ij. 0.1625 Q.2k52 
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errors in our one-center function. A s  in the case of the first 

natural spin orbital, the one-center function is much too con­

tracted, having niaxlraa along the axis at a distance O.Ii- a.u. on 

either side of the origin instead of at the nuclei. A compari­

son at points other than those on the axis indicates a close 

correspondence between the tir® functions everywhere except in 

the region around and between the nuclei. 

Evidently, then, central field functions centered at a 

single point in the molecule, and in particular the Laguerre 

functions used in this investigation, do not form a suitable 

basis for accxirately representing the hydrogen molecule wave 

function throughout all regions of the molecule, particularly 

in the region of the nuclei. That one-center functions can 

describe the over-all synaaetry of the wave function rather 

well Is shown by the rapid initial convergence. The slow 

subsequent convergence then simply reflects the failure of 

the one-center orbitals to fit the detailed form of the wave 

function, and it is apparently just these details of the wave 

function which are of importance in securing ultimate conver­

gence in the energy. 

It also seems very unlikely that the use of any other set 

of one-center orbitals, such as the overcomplete set of Slater 

functions, would secure more rapid and con^lete convergence in 

the energy. 

We conclude, then, that the one-center method is not a 

convergent procedure for calculating the total energy of the 
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ground atat© of the hydrogen molecule. Although we have ob-

taiiied an energy value for the hydrogen molecule iih ich Is 

second in acc\iracy only to that of the convergent James and 

Goolldge calculation, the error in the energy is still 0,013 

a,u., and this is an error which is about one order of magni­

tude greater than that which can reasonably be tolerated for 

such a simple system, ¥e further expect that the one-center 

method -wfill be still less convergent when applied to other 

more complicated and 1® ss tightly bound hydrogenic systems. 

This point will now b© considered more fully, using as an 

example. 
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I?. OIE-CElfER GALOUMTIOI FOR fHl MOLECULE ION 

A. Introduction 

fh© tjpiatoaic hydrogen moleoule ion, is known to 

be a very stabl« systeat (when left to Itself) and is formed 

ia rather large quantities whenever hydrogen gas is ionized 

($8,59)• Experiaentally vers? little is known about this 

system. There is reason to believe, however, that the 

primary process responsible for the formation of is 

. H; - . H. (l,.l) 

Ejeperiments tell us no more as to the energy, spectrum, or 

chemistry of 
^3* 

fhe first calculations for this system were made some 

time ago by Coulson (60) and by Massey (61). Later, 

Hirschfelder, fiyring, and Rosen (10) applied the valence 

bond method to the symmetrical linear configuration. Using 

Is hydrogen-like atomic orbitals, with screening included, 

these authors carried ©ut a complete Heitier-London-plus-

ionic-terms variational calculation. All integrals were 

evaluated exactly. The energy values obtained for the 

various stages in the calculation are given in Table 11. 

lecent attempts (62) to improve this calculation by intro­

ducing off-center Gurnee-Magee orbitals resulted in only 
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Table 11. Some previous investigations of th© wave function 
and binding energy of 

Description of wave function energ:v ence 
". u.) 

Binding Refer-
en< 
(a, 

Symmetrical linear, ^^^ac'^^bc 

H-L, R=2.0 0.1i<.6 10 

H-L, screening, R»1.55 0.2086 10 

H-L, plus ionic, R»2.0 0.1731 10 

H-L plus ionic, screening, R=1.53 0.214,77 10 

H~L plus ionic, Gurnee and Magee 
orbitals, screening, 1=1,60 0.2526 62 

MO, one configuration, screening, R=1.52 0.2180 67 

Handler, one-center, R=1,S$ 0.163 2 

Hagstroffl, one-center, ss, sd , sg^, 
and PqPo configurations, R=l,50 0.230 

TJnsyjnmetrical linear 

H-L plus ionic, screening, 1*00=!.5S» 
ri3Q»1.89 0.2i|.06 63 

H-L plus ionic, screening, rQ-*l.l5, 
rbc«1.92 0.2069 63 

Iquilateral triangle 

H-L, screening, 1=1.82 0.2658 11 

MO, one configuration, screening, R«1.62 0.2623 11 

MO, two configurations, screening, R*1.62. 
Equivalent to H-L plus ionic 0.2929 11 

Handler, on©-center, R«1.56 0.20^ 2 

Hagstroin, one-center, (ss) only, R=1.6 O. I 7 O  



www.manaraa.com

83 

negligible improvemeiit, wMl® calculations {63»6ii.) on the 

unsyMaetrioal linear oonfigiirations Indicated that the 

potential curve for linear has a minijaum for the syramet-

rical configuration. 

Calculations have also been carried out by Hirschfeider 

(11,6$) for the ground and excited states of two non-linear 

configurations of Hj, namely, the equilateral triangle con­

figuration and a right triangular form. In this case it 

was necessary to resort to a differential analyzer to eval­

uate the three-center integrals. Only Is functions were 

considered. The equilateral triangle configuration was 

found to be stable by -0.293 a.u, ©r l8i{. kcal with respect 

to dissociation into hydrogen atoms and a proton. Hence 

w© see that the process Cij^.D is certainly exothermic by 

more than II kcal (the values for the binding energies of 

Ig and Hg are 108.6 kcal and 6i|..0 kcal respectively) and, 

allowing for the customary errors in the valence bond 

treatment, was estimated by Hirschfeider to be exothermic 

by as much as 38 kcal. 

A ©omparison of the results for the right triangle 

and equilateral triangle configurations led Hirschfeider to 

conclude that the equilibrium configuration raust lie some­

where in between. Since it was necessary to approximate 

some of the three-center integrals, the angle could not be 

reliably determined more closely than this. This result 

probably should not be taken too seriously, however. 
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Pearson {66) and. recently Walsh, Moore, and Matsen (6?) 

have applied the molecular orbital method to the ayrametrical 

linear eonfigurttion of Hy In general, the results are 

superior to the siinpl© He it ler-London approximation, but 

inferior to the Heitler-London-plus-ionic-terais treatment. 

As has alreadj^ been pointed out. Handler (2) used the 

one-center method to calculate the ground state energies 

for sywtetrical linear and equilateral triangular The 

results obtained are given in Table 11. 

fhe Tariational Problem 

One-oenter calculations were carried out on both the 

symetrieal linear and equilateral triangular forms of Hy 

Except for minor details, calculations proceed much like 

those for Hg« The Hamiltonian for is 

H « -IV^ - iv^ - lA., - lA - 1/r 
1 2 ~ bl cl 

- 1/r * 1/r - lA * l/r {ij..2) 
a2 b2 c2 12 

where a, b, and c denote the three hydrogen nuclei. For 
-t-

linear syimetrical the polar axis was located along the 

bond axis with the central nucleus at the center of coordi­

nates, For the equilateral triangular case, 

the molecule was perpendicular to the polar axis, with the 
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ctatar of symmetry of the aoleeul® at the canter of coordi­

nates • 
4-

Linear syaaetrieal belongs to The ground state 

wme fmotlon was assumed to have the syaimetry ^Xg* Heuoe, 

the same kiads of eonfiguratloas used for ean also be 
+ 

used for My Moreover, the relative importanoe of the 

varioms terms is expeoted to be approximately the same, since 

exactly the same Mads of electron correlation effects enter. 

However, th® higher spherical imriaonies (i.e., sg , si , etc.) 
o o 

are expected to be more important since in this case the 

distances of the nuclei frcwi the expansion center are con-

.ld«r.bly gr.atsr tMn for 

Equilateral triangular has the symmetry 

Symmetry adapted wave functions are easily constructed by 

group theoretic methods. Ve shall not discuss these methods 

here, however, since for this ease we have carried out the 

configuration interaction only in the spherically averaged 

approximation, that is, with (as) terms only. 

fhe energy matrix elements are given by equations 

(3»22) and {3«23) except that is now given byi 

For linear 1^, "• 

For triangular Ey - 1/r^^ - l/r^^ -
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Thas® changes necessitated only a slight modification in the 

matrix element compiling routine. 

The only new integrals required for the calculations on 

war© th© nuclsar attraction integrals. The electron re­

pulsion integrals used were already available from the H2 

calculations, 

0. Results and Discussion 

In fable 12 w© list in part the results of the calcula­

tions for linear symmetrical Both the internuclear 

Table 12. One-center expansion of linear symmetrical Ho, 
Parameter values: 2g=»2p=2(|==Zg=2.086666. 
Internuclear distances: Rg^Q=K|jg«1.5 a.u. 

Description of Function Binding 
Energy 
(a.u.; 

10(ss) 0.07389 

lOCss), Siad^) 0.18266 

I5(ss), iSCsdo) 0.16321^. 

lO(Ba), 9(sdo), 9(sg^) 0.3D929 

lO(ss), 9(sd„), 6(p_p^) 0.202k3 

1 0(ss}, 9(sdQ), 9(sgQ), ( ^ ( P Q P Q )  0 . 2 3 0  

a 
Estimated value assuming additivity of (sgg) and 

(PoPo) contributions. 

a 
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distances and seal© factors w©re varied to minimize the 

energy. 

Calculations were carried out at internuclear distances 

of 1.5, 1.523', and 1.55 a.u. using 10 (ss), 9 (sd^), and 9 

(sg^) configurations. The minimum in the energy was found 

for an Internuclear distance close to 1.5 a.u. The data 

given in Table 12 are for this distance and for the corre­

sponding best values of the various scale factors as deter­

mined by the configuration interaction. The optimum values 

of these parameters were determined by the usual stepwise 

procedure, that is, by minimizing first with respect to Zg 

for 10 (ss) states and then, with z„ held fixed at its s 

optimiMi value, adding 9 (sd^) states and minimizing the 

energy with respect to and so on for each new type of 

state added. 

The results of these calculations speak pretty much for 

themselves. We see that with only "four types of states we 

have obtained a binding energy of 0.230 a.u., which is better 

than all previous results (Table 11) for this system except 

those of Hirschfelder et al. (10) (0.2i|.77 a.u.) using the 

Hei tier-London method with ionic terms and screening included 

and Barker et al. (62) (0.2526 a.u.) using the off-center 

Surnee-Mage® orbitals. This latter calculation represents the 

best approximation to date for this system. We note that the 

one-center result of Handler using 3 (ss) and 3 (sd^) terms 
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is only 0.163 a.u., while the best result obtained here for 

terms of this type is 0.1B286 a.u. 

The convergence of the expansion is manifestly slower 

than for H2 as can be seen from a comparison of the energy 

contributions in H2 and for corresponding types of terms. 

Thus in the energy contributions due to {ad^), (sg^), and 

(PQPQ) states are seen to be -0.1095 a.u., -0.0260 a.u., and 

-0,0196 a.u., respectively. The corresponding best values 

for these states in Hg are -0.0779 a.u,, -O.OlOii. a.u., and 

-0.0160 a.u,, respectively. This implies that more configura 

tions will be required to obtain a good energy for than 

are correspondingly required for H2. This slow convergence 

is due essentially to the fact that in the charge distribu 

tion is much more elongated than in Hg so that in expanding 

the wave function the axially symmetric terms, especially 

those involving the higher spherical harmonics (e.g., g^, 

IQ, 1Q, etc.), assume a correspondingly more important role, 

that is, enter into the wave function with larger coeffi­

cients which in turn implies a greater contribution to the 

final energy. 

These results indicate the necessity of including such 

states as (BiQ),(slo), etc., as well as the angle-dependent 

terms etc. We can easily estimate what can 

be gained in this way, reasoning by analogy from the contribu 

tions found for terms of these types in H2 and assuming any­

where from a two to a four times increase in Importance for 
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th© axlaJliy symaetrlc terms. On th.e other hand, terras with 

angular dependence such as are expected to be less 

Important in than in Hg. This follows from the fact that 

th® total angular correlation energy steadily decreases as 

one goes from He to Hp to H (and, in fact, for H ti ould 
< - 3  3  

approach zero as approaches infinity). Thus, we 

estimate the total energy to be gained from adding 

(dii^j^), etc., terms at about -0.010 a.u., while the con­

tributions due to axially symmetric terms are variously 

estimated at about -0,008 a.u. for (si^) terras, about -0.002 

a.u. for (si ) terms, and about -0.005 a.u. for miscellaneous o 

terras. Although these estimates are admittedly rather arbi­

trary, they are certainly not unreasonable. Adding these 

estimates to the calculated binding energy of 0.230 a.u., 

and allowing for a spread of 0.005 a.u. either way, leads to 

an estimated binding energy of 0.255^0,005 a.u. It seems 

safe to assume, then, that the Hirschfelder et al. (10) re­

sult (0.21^,77 a.u.) can probably be reached with axially 

symmetric terms only and that inclusion of terms with angular 

dependence as well will give a result as good as or slightly 

better than the Barker et al. (62) result (0.2521 a.u.K 

Calculations are presently in progress to chock thao 

point. 

The calculations on the equilateral triangle configura­

tion of were carried out in the spherically averaged 
J 

approxMation onlj (Table 13). Despite their rather 
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Table 13, Binding energj' of the equilateral triangle con­
figuration of H3 using 6 (ss) config•orations. 
Energies in atomic units. 

R 1.386 a.u .  R 1.  732 a.u. R 2.078 a.u. 

2s E 1 E 

l.S  0 , 1 5 1 8  l.ij- 0.155^^ 1.375 0 . 1 1 1 2  

1.675 0.1567 1 . 8  0,1571  1.667  0.11i^.2 

2.375 0.1569 2.2  0 , 1 5 9 0  2.063 0.1139 

2.875  0 .1172  2 .6  O.llij.7 

incoapltte form, the results are presented here because of 

their promising nature. A simple interpolation of this data 

indicates that the minimum in the energjf' occurs for an 

internuclear separation of about 1.6 a,a, A single calcu­

lation at this distance using 15 (ss) configurations gave 

a binding energj of O.l'/O a.u. Thus, with (ss) terms alone 

the system is found to be almost stable with respect to 

dissociation into a hydrogen molecule and a proton. Although 

this binding energy is not as high as even the simple 

Heitier-London without screening result, it is promising 

that considerable binding is obtained with these relatively 

Inappropriate spherical orbitals. It seems likely that the 

one center method will be highly successful for the triangular 

configuration of 
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In conclusion, these preliminary results for along 

with the more detailed results for give encouragement 

that for a very limited class of molecules the one-center 

method will b© a useful and successful procedure capable of 

giving results comparable in accuracy to those obtained using 

the conventional approximation methods based on atomic orhit-

als. On the other hand, the observed slow convergence and, 

in the case of the behavior of the wave function clearly 

indicates that highly accurate (convergent) calculations of 

total energies are not at all feasible by this method. 

The present calculations, of course, should be regarded 

as only a rough indication of the realm of applicability of 

the method. Further calculations on systems with three and 

four electrons, systems with low symmetry, and systems with 

larger internuclear separations are needed before the conver-

gency properties of the one-center expansions can be claimed 

to be completely understood. Nevertheless, it is suggested 

that the following systems can be successfully handled by 

this method: Hg* Hg# and possibly LIH, HeH"^, and 

HeH, Extension to more complicated oases (e.g., He^, 

etc.) involving inner shell electrons off the expansion cen­

ter and/or more than four electrons does not seem to be prac­

tical. 

D. Other Possible Applications 

Excited states can be attacked by the same general pro-
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oedures outlined above for the ground states. If the excited 

state Is the lowest state of Its syininetry type, the calcula­

tion is straight forward and proceeds exactly as for the 

ground state, only now the expansion terms must have the 

ayMmetry of the excited state. If the excited state is 

not the lowest of a given symmetry type, one makes use of 

the fact that the second lowest root of the secular equation 

is an upper limit for the energy of the second lowest state 

of the given symmetry, and so on for the higher roots. Thus, 

by minimizing the higher roots of the secular equation one 

m&j hope to gain approximations to the energies, eigen-

functlons, and potential surfaces for the excited states. 

Of course, this may demand the use of more terras than 

are required for the ground state. In addition, the parame­

ters which minimize a particular higher root will in general 

notb® the same as those that minimize the lower roots of the 

secular equation so that the eigenfunction of the excited 

state will not be orthogonal to the elgenfunctions for all 

lower levels as, of coiirse, it should be. This may not be 

too big an objection, however, if one is interested only in 

the energies. 

Matsen (8) has carried out single configuration one-

center calculations for several of the excited states of 

and has obtained surprisingly good results even for fairly 

large internuclear separations. In a recent note, Dalgarno, 

Molseiwltsch, and Stewart (68) have summarized the main con-
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•+• 4-+ 
elusions of a series of investigations on and H©H 

comparing the one-center (united-atom) approach with the 

conventional LCAO MO method. Generally speaking, it was 

found that for excited states the united-atom approxima­

tion was remarkably accurate and usually superior to the 

LOAO MO approximation even for R values as large as 5 a.u,, 

while for the ground states the LCAO MO approximation was 

superior. In view of these results it would appear that 

the one-center method will be highly successful for ex­

cited states, indeed, probably much more so than for the 

ground state. 
1 + 

Some preliminary work; on excited X states of 
8 

has been done in the course of the present investigation. 

The results, although generally quite encouraging, are 

quite incomplete and will therefore not be elaborated on 

further here. 
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V .  .SUMMARY 

The use of the one-center method for the direct calcu­

lation of total energies of simple molecules has been Inves­

tigated and application has been made to and The re­

sults obtained are comparable in accuracy to those obtained 

with the conventional methods involving the use of atomic 

orbltals and suggest that extensions to more complex cases 

(such as H- or LlH) are probably possible and well within 
3 

the reach of computing machines now available. In the case 

of Hg the calculated energy Is -1.161 a.u, for R*1.4 a.u. 

This is the second best result for this system to date. 

Generally speaking, the convergence of the one-center 

expansion Is slow. In view of this slow convergence and from 

a detailed examination of the calculated wave function in the 

case of Hg it is concluded that highly accurate (convergent) 

calculations are not feasible by this method. Moreover, as 

shown by the results, the convergence becomes slower as 

the internuclear separations become larger. The various fac­

tors affecting the convergence have been considered in detail. 

A one-center calculation on previously advanced by 

Huzlnaga as support for the one-center approach has been shown 

to be in error. 

The programs constructed for the IBM 65O computer for 

carrying out the various computational processes in the one-

center calculations have been briefly described. 
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?III. APPENDICES 

A, Th® Associated Laguerr© Polynomials 

n, 
. Th® associated Laguerr© polynomial l'jj.(x) is defined 

by means of th® generating fiinotion 

. ,,n ^-xt/{l-t) „ oo „ .lE 

'"I,.:,... • s. 
or through the Lagu®rr® polynomials 

\{x.) « ~r « l~(e ~-(e x )), (8.2) 
^ dx*" ^ dx"" dx^ 

An explicit series expansion for L^(x) is 

nl(k-n)l ^ * 

{k-n)l i,o (k-n-l)l(n+i)lil ^ 

where j^Fj^{m}n;x) is th© confluent hyper geometric function 

(see Sneddon i3k-» P« 32) for notation and definitions). 

This series expansion is probably the most convenient way 

of obtaining the higher order functions. The polynomial 
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y*L^(x) satisfies the differential equation 

xy" + (n+l-x)y' + (k-n)y« 0 {B»k) 

and the reourreno© relations 

I^x) « (8.5) 

+ (x+n-2k-l)L^(x) + » 0 (8.6) 

l.^^^(x) » (1/x) [(k-n)L^(x) k\^_j^(x)J . (8,?) 

n 
Also# the polynomial Ljj,(x) satisfies the orthogonality 

Integral 

JQ®  V L j ( x ) I ^ ( x ) d x  «  S i k , m )  ( 8 . 8 )  

A word of caution is in order here. The definition 
(8.1) or (8.3) for the associated Laguerre polynomials is 
the one usually taken in applied mathematics. In pure 
mathematics the function 

L^(x) « P (-k|n+lsx) 
» klnl 1 1 

which is the solution of the differential equation 

xy" + (n+'l-x)y» + ky * 0 

is often taken as the definition of the associated Laguerre 
polynomial so that care must be taken in reading the litera­
ture. 



www.manaraa.com

102 

Equation (8.8) is a special case of a more general 

fomula first derived by Sehrodinger (69) 

J^x^e'^L2{x)L|I (x)d3E « piklk'l (fe-n-r) 

- L,'T )r') (8-9) \k:' «n' -r/ V r ' 

Her# b is the smaller of the two integers (k-n) and 

(k'-n*), and the parentheses sjrabols denot binomial coef­

ficients. 

B. Derivation of Equation (3.I44) 

fhe one-center nuclear attraction integral between 

the Laguerre functions is given by (for convenience we let 

n ̂ n') 

f <n-<l-l)l(n'-q-l)l |*f ̂-x^2q+lj^2q+2 ^jj^2q+2 

((n+q+l)rtni4-q+l)l3 J  

Where we have used the change of variable 2zr=x. The 

integral on the right side of (8.10) is easily evaluated 

using (8.9). We obtain 
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n-q-1 n+n'/ -IN 
(2q+l)l(n+q+l)l(n'+q+l)I ^ (-1) ( j 

waatA " y. i*** fSo 

/ -1 X/Sq+l+rN 
* (n'-q-l-p/V r / (8.11) 

(n+q+1)J(n'+q+l)i (2q+l+r)i/rl (8«12} 
JfSsO 

(8.13) 
(n-q.l)l(2q+2) 

wlaer® w® hav® used the relation (32, p. 586) 

/-n \ /k:/n4-ic-l\ 
( !,)» (-1) ( I (8.11+) 

in going from (6.11) to (8.12). The sui«a»ation in (8.12) la 

a particular ease of 

,8.15) 

Substituting (8.13) back into (8.10), we obtain (3.^(4) * 

wljioh is the deiired result. 

G. Deriiration of Equation (3.14-3) 

fh© kinetic energy integral between the Laguerre 

functions is given by 
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^ ) S(q, q') (l/lfz) 

f ^n^q-DUn'^q-Dl |l ^2^.ix^q^2qf2 

Ua+q+Dl^Cn'+q+Dl^) ^0 

^ f-F s ̂ (8.16) 

where x»2zp. Carrying out th® differentiation, eliminating 

the second derivative using (8.1(.), and regrouping, we get 

(l/2z)| (A + nB -CA) (8.17) 
Mn+q+l) I ̂ (n'4-q+l)» 

where 

A . f, ML̂ T.K, •'O n+q+l n'+q+l 

f -x 2q+l 2q4-2 . > 2q4-2 . 
® - J o °  

^0 n+q+l n'+q+l 

The integral C is given by the orthogonality Integral 

(8,8) while B is just the one-center nuclear attraction 

Integral (8,10), except for a constant factor, and is given 

by (8.13). As before, A is evaluated using (8.9), and is 

(8.18) 

(8.19) 

(8.20) 
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n-^-2 
) 2. {n-q-l-r) 

|>«bO 

/2q+l+r\ n^-1 /aq+l+rxl 
r  /  £  (i i ' -q-l-r)V J. )J (8 .21)  

n n' 

where, la the brackets, the first term is used when n*n' 

and the second term is ustd when n<n'. The sums are easily 

evaluated using (8.15) to give 

A « - n»' -^-3.) IniriL], n<n'.(8.22) 
(n-q-Dt I 2q+2 2q+3 J 

Substituting the values of A, B, and C into (8.16) and 

eollecting terras, we obtain (3• 1+3), which is the desired 

result. 

15• fh© Auxiliary Functions 

1. The auxiliary functions A(n,q) and D(ntq) 

fh® A{n,q) are defined by 

A(n,q) * r r^e'^^dr » nle^V^^^^ 21 (8.23) 
Jl k»0 

They are Most easily calculated by means of the recursion 

A » -(2q4-l) I (n+q+1) S (n*+q+l) i rS( 
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relations 

A(n,q) « q ̂ (nA(n-l,q) + ©'^) (8.21|.) 

A(0,q) « ©""Vq (8.25) 

Hatlier extensive tabulations of these functions have been 

published (70)» but these tables are of praotical use only in 

hand calculations sino® the machine calculation based on 

(8.21^.) is an extremely efficient procediir®, especially if 

the A(n,q) for a range n*0(l)l are required. On the other 

hand, if a particular A(n,q) is required, equation (8.23) 

should probably b© used. In either case, floating point 

arithmetic must b© used because of the wide variation in 

the value of A(n,q) with n. 

The D(n,q) are defined by 

pmQ (n+l+r)! 
(8.26) 

They are related to the A(n,q) by the relation 

A(n,q) « nl/q 
n+1 

- D(n,q) (8.27) 

but this relation obviously cannot be used to get the D(n,q) 
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since, for n>q, l>(n,q) behaves like Rather, given 

the D(n,q), equation (8.27) Is a convenient method for 

ealcuMting the A(n,q) • A recursion scheme for generating 

these functions is provided by (8,26) followed bj repeated 

application of the downward recursion relation 

I)(n-l,q) « n"^(qD(n,q) + e"^) (6,26) 

fh© upward recursion rapidly loses s gnificant figures and 

cannot be used if n is large (sa> 10) without carrying a 

prohibitive number of figures. We observe that D(n,q)<l, 

and hence fixed point arithmetic can ciasily be applied with 

a minimum of scaling difficulties. 

For individual computations of D(n,q) with |qKn^3/l|-» 

^Fj^(l}n+2jq) can be evaluated in terms of rapidly converging 

continued fractions (71, 72). Otherwise, the series develop­

ment (8.26) sfiaould b® used. In this case, the magnitude of 

every term beyond the first is lesa than one, facilitating 

the us© of fixed point arithmetic. 

fhe D(n,q) occur not onlj in the two-center nuclear 

attraction integral, but also can be used to express the 

Eotani By3,(q) function 

^1 
Bj^(q) = t%"^^dt = D(n,q) + (-l)'^D(n,-q) (8.29) 

This formulation is preferable to the traditional method 
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of computation which rapidly loses digits. See, however, 

reference (73) for an alternative convergent method of 

computing the B^(q). 

2. The auxiliary function J(m,e(;n,^) 

The functions J{m,c<jn,/ff) defined by (3*27) are most 

easily calculated by means of the recursion relations 

• nl/o((o(+/3) (8.30) 

J(0,oijn-fl,/?) - J(0,o(}n,^) (8.31) 

J(m,o(jn,/S) « ̂  J(m-l,o(jn,^) + (m+n) l/(o<+^)^ ̂  V 

- § J (m-l,o<jn,/9) + J(0,o{;n+m,^) (8.32) 

J(m,o<;n,^) « ̂  J(.m,o( jn-l,/S) - (c^//?}j(0,o(jn+m,^) (8.33) 

With these three relations it ia always possible to recur 

in such a way that all terms enter positively. The most 

efficient scheme for either hand or machine calculation is 

as follows: 

Suppose we require J for all m^m^, n^^^n^n^. 

First, compute J(0,<xji,/S) for N»0, 1, . . ., n^+m^ using 

(8.30) and (8.31). Next, calculate J(m,<Ajng,/5) (m«l, 2, . ., 
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Mg) using equation (8.32). Finally, equation (8.33) is used 

to calculate for n^-l, . . . f for each 

value of m in the interval 
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