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I, INTRODUCTION

The molecular ofbital approximation is probably the
most important method of general utility for dealing with
problems in molecular quantum mechanlcs. It has found a
large measure of success on qualitative and semi-quantitative
grounds asnd, more recently, with the development of the
Roothaan SCF procedures and by extensive use of conflguration
1nteréatiun, hes ylelded semi-quantitative results of consid-~
erable interest. Much of the current work is centered on
diatomle molecules, where attempts are being made to improve
the calculations by an extensive use of configuration inter-
action. This is being made possible by the use of modern
high-speed digital computers, and it seems probable that
within the next decade many of the properties of the dla-
tomics will be calculated.

Yet for three and four center problems, even for the

very simplest ones, such as H; and H_, the method does not

seem capable of providing a truly aciurate description of
the electroniec structure of a molecule. The principal
reason for this, of course, lies in the prevalling use of
atomic orbitals in bullding up ﬁhs molecular wave function,
since this leads to major difficulties in evaluation of the
molecular integrals., The evaluation of three and four

center Integrals in particular has proved to be a singularly

intractable problem. Although this problem is currently



being vigorously attacked with the aid of large computers,
prospects for an early solution do not seem bright. Until
more definite progress is made in the evaluation of these
integrals, there seems little likelihood that reliable a
priorl calculations on polyatomic molecules (other than
distomics) will be possible using present techniques.

In this thesis we describe some energy calculations on
some simple two-electron molecular systems by a "one-center”
method which seeks to avold some of the difficulties of the
conventional molecular orbital method. This one-center
method for molecules is aimed primarily at eliminating the
calculation of meny-center integrals by replacing the usual
set of atomic orbitals on the various atoms of a molecule
by & more extensive set of basls functions on a single
center. Then the only integrals to be evaluated are the
one~center integrals and a comparatively simple two-center
nuclear attraction integral. Problems of polycentric
integrals naturally do not arise. The one«center method is
intended only for simple and highly symmetric molecules,
such asa HZ' H;, HB, and H:+.

three elsctron problemas are of such fundamental importance

However, these simple two and

in theoretical chemistry as to warrant the development of
specialized techniques for their solution.

It has been the primary objective of this research to
examine the relative advantages and disadvantages of the one-

center method as a systematic, practical procedure for cal-
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culating the electronic properties of simple molecular
systems, For this purpose, one-center expansions have been
carried out for the hydrogen molecule and triatomic hydrogen
molecule ion H;, two systems of fundamental importance in
chemistry.

The hydrogen molecule problem is of little interest per
8¢ since it has already been treated with conslderable accu~
racy by James and Coolidge and with lesser accuracy by many
others, but it is a very convenient system with which to
evaluate the various approaches to an energy calculation (and
has been often used for this purpose in the past). The
number of simplifying assumptions is here a minimum, and
accurate experimental data and the results of meny previous
calculations are availeble for evaluation of results,

The 3; system was chosen because it represents the simplest
example of an actual molecule containing three centers for
which an accurate non-empirical cslculation by any of the
conventional methods 1s essentiaslly intractable. This system
should provide a more stringent test of t he one-center method
than the hydrogen moleculs problem since the distances from
the expansion center to the nuclei are considerably greater.
Although no experimental data are avallable for this case,
there are several theoretical caleulations with which to
compare the results.

All of the calculations described in this thesis were
carried out with the aid of the IBM 650 computer at the
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Research Computing Center at Indiana University. One of
the principal objectives of this investigation has been the
development of computer programs which enable the entire
one-center calculation to be carried out completely within
the 650 (that is, with a minimum dependence on hand compu=-
tations).

The thesis is divided into four chapters following this
introduction, Chapter II comprises & general exposition of
the one-center method for molecules as well as a review of
previous one-center calculations. In Chapter III we discues
the one=center calculations for the hydrogen molecule. The
results of the calculations are presented in both tabular and
graphical form and are analyzed in detail. The choice of
basis functions, formulas for the basic integrals between
these functions, and the construction of the symmetry-
adapted wave functions are also discussed in this chapter.

In Chapter IV thp results of the one-center calculations for
Hg are presented, while Chapter V lists the major conclusions

of this investigation.
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1I. THE ONE~-CENTER METHOD FOR MOLECULES

It has recently been suggested by several authors that
the electronic properties of simple or highly symmetrical
molecules can be profitably found by expanding the molecular
wave function in terms of a complete set of functions centered
at & single point in the molecule. Two essentially different
methods have been proposed, In one method the total electronic
energy of the molecule 1s calculeted directly. Thus, for
instance, Huzinaga (1) has cealculated total electronic
energles for EZ and 32 by expanding the ground atate wave
functions in terms of 8 and 4 type Slater orbitals centered
at the midpoint of the bond axis, Handler (2) has carried
out similar calculations for Hy, and has also used one-center
expansions for ﬂ;. A generalized united atom method has been
proposed by Chen (3) wherein the electronic wave function of
& polyatomic molecule is expanded in terms of the eigen-
functions of the corresponding united atom, the energy then
being obtained by a perturbation calculation, Finally, Shull
and Léwdin (li) have emphasized that one-center expansions
should be particularly feasible for small molecules containing
hydrogen atoms and especlally feasible for the higher excited
Rydberg-like states of such molecules.

On the other hand, Allen and Nesbet (5) and, more recently,
Nesbet (6), have developed a one-center method whieh is quite

different in emphasis from the above, These authors take the



view that it is impractical to calculate total energies of
molecules directly. Instead, they propose to calculate only
certain "localized™ molecular quantities, such as the nuclear
quadrupole coupling constant GV<l/b3>), which are primarily
dependent on the electronic wave function in the neighborhood
of a singia atome The wave function used in taking the avere
age values is determined by a one~center energy calculation
about the particular atom in guestion. However, no importance
as such is attached to the energy value obtained,

We will consider both of these methods in some detail,
A. Calculation of the Total Energy

The one-center method for molecules is almed primarily
at eliminating the extremely complex integrations that occur
in the molecular orbital and valence bond approximstions,

We recszall that 1in the valence bond approach the molecule is
regarded as composed of atoms and that the building blocks
for the whole wave function are then necessarily the atomie
orbitals centered on the various atoms of the molecule. On
the other hend, in the molecular orbital method it is custome
ary, but fortunately not a necessary feature of the method,
to express the molecular orbitals as linsar combinations of
atomic orbitals centered on the various atoms. The major
difficulty encountered in using wave functions built up of

atomic orbitals 1s in the evaluation of the molecular integrals,



Por two-center problems very complicated methods of integra-
tion are required, while in three and four center problems
no satisfactory methods of integration are known. There
are, of course, good reasons for the prevailing use of
atomie orbitals in describing the molecular wave functions,.
It provides a very good approximetion in many cases,
especlally for those imner electrons which retain their
atomic character and partake but little in the chemical
binding.

The idea in the one~center method 1s to replace the
usual set of atomic orbitals centered on the various atoms
of the molecule by a more extensive set of basis functions
centered on a single point., We thus avold the problems of
three and four center integrals entirely, and are left
with only the simple one~center integrals of atomic theory
(kinetic energy, one-center nuclear attraction, 14 one-
center electron repulsion integrals) plus a comparatively
simple twe-center nuclear attraction integral, These
integrals are all easlily evaluated, provided the one-center
functions are limited to atomic central field functions,
that is, a radial function f(r) multiplied by a spherical
harmonic Y;,(0,6).

8ince only a relatively small number of basic orbitals
can be gonsidered in my actual caleulation, one-center
calculations of the total electronic energy will be possible
only for simple end highly symmetrical molecules., Inner



shell electrons on centers away from the expansion center
will be especially difficult to represent by this method.
This effectively limits the molecules that can be treated
to those contalining only hydrogen atoms off the expansion
center, However, it is the outer electrons belonging to
the whole molecular frame which play the key role in
determining the chemical and physical behavior of the
molecules It is just these electrons, for which the atomic
orbitals form less satisfactory building blocks, that are
best represented by one-center wave functions, Conceivably,
- the difficulty concerning the inner shells might be handled
empirical 1y, but this seems somewhat dubious in view of

the many other limitations of the one-center method. How-
ever, see (3). The expansion center, of course, can be
chosen anywhere it is physically and mathematlically appropri-
ate to do so., It would ordinarily be either the point of
maximum electron density or point of highest symmetry or
both; 1t need not necessarlly coincide with s nucleus,

It seems not too optimistie then to expect that
molecules such as Ky, H,, a;, By, L, CF , sto., can all be
satisraetorily handled by the one-center approach. It is to
be expected that the number of configurations necessary for
an adequate description of the molecular wave functlion will
be fairly large, and that the convergence is likely to be
slowe This rether obvious disadvantage 18 mitigeated some-

what by the faet that the calculations are sufficiently
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systematic and straightforward to enable complete automatie
computetion on high speed digital computers,

The one-center method has been used to calculate the
electronic energy of such simple and highly symmetric
molecules as ﬁ*, H, CH, and KHB, but with singularly

2" 2 L .
unsuccessful results, Only for K* and H_ has 1t been

2

possible to obtain a stable molecule. ®

Morse and Stueckelburg (7) very early calculated energy
levels of H; by the united-atom treatment., More recently
Matsen (8) has extended these calculations to the higher
exclted states, Using firgt order perturbation theory on
a united-atom model for K;. Matsen calculated the energlies
of the lsoad, 2po, 2pn, 3pn, and 345 states. The zero order
funetions were the hydrogen atom functions of charge 2z
centered midwg between between the nuclei; z (=2 for the
true united atom He') was varied to minimize the energy
of each state. The results were surprisingly good for the
excited states, but rather poor for the ground state. The
reason, probably, that the treatment is better for the
excited states is that the electron density is spread far
enough away from the two nuclel so that they appear united,

Huzinaga (1) minimized the energy of the ground state
of HE. using for the wave function a three term linear
combination of the Slater orbitals al(z), nh(z’), and du(z')

centered at the midpoint of the bond, Here z and z' are

variable parameters and
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g D=1l =zp
8n(z) =Nr e YOO
(2.1)

g n~1l_-g
dn(z) = ﬁnr ° ”Yzo

where H: i1s a normalization factor and Yxe is a normalized
axially aymmatric spherical harmonice At the equilibrium
dlstance of 2,0 a.,u,#, the best energy obtained for this
three term function was «1,0747 a.u. for z=1, z'=3, This
is to be compared with the exact value (9), =1.1026 a.u.,
and to Matsen's result, ~0.,967 a.u., for the beat single
(1s) function,

Huzinaga (1) also attempted a one-center calculation
of the total energy of the hydrogen molecule at a fixed
internuclear distance of l.4 a.u. The stages in his
calculation are summarized below. The expansion functions
are the Slater funetions (2.1), the z's being varied to
minimize the energy. As usual, the expansion center 1=z
midway between the two nuclei, The experimental energy
for Hy 18 =1.17h a.u.

(1) The best wave function for Hp of the type sl(z)2
gave -0,9879 a.u. for the total energy which means a binding
energy of =0,0121 a.usj that is, the molecule is not stable,

(2) If, instead, the function g(1l)g(2), where g =

%*Atomic units are used throughout this thesis. One
atomiec unit of length (a.u.) equals one Bohr radius, 0,5292
A; one atomic unit of energy (a.u.) equals twice the
ground state snergy of the hydrogen atom, 27.206 electron
volts (e.v.)e
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clul(z) + ¢.8 (2'), is used, the molecule does bind and

]
has a tatalzagargy of =1,020 s.,us for the optimum values

of ¢, €5, %, 8nd 2z's It should be noted that this functlon
is 8till spherically symmetric.

(3) 1If one of the electrons is assigned to a Hg type
orbital, that is, a cigar shaped orbital symmetric about
the axis, and the other electron assigned to an atomie
ls-type function, a much better energy results. This is to
be expected since the wave function now reflects the Z;
symmetry of the ground state while the use of separate
orbitale for the two electrons serves to minimize the
energy of repulsion between the two electrons. The calcul-
ation gives a total energy of -1,095 a.u.

(4) Addition of a single p2 configuration to approxi=-
mation (3) improves the energy by only 0,011 a.u. for a
total energy of -1l.106 a.u., which is still less than the
simple Hdeitler-London=-Sugiura value for Hp, «1.115 a.u.

(5) 1In his final approximation, Huzinaga used separate
HZ type orbitals for each electron (that is, using s and d
orbitals only) and obtained a total energy of ~1.1397.

This seems to be an unreasonably good energy for such a
simple wave function, We have therefore repeated

Huzinega's work and have reproduced his results up to the
final approximation. We belleve Huzinaga's final result to
be in error and that the actual energy to this approximation

is «1.106 asu.; the details of this calculation are in
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Chapter III.

Handler (2) has applied the one~center method to the
systems Hp, linear symmetrical Hg, and equilateral tri-
angulap H;‘ Using a superposition of six configurations -=-
three (ss) and three (sd) ~-- constructed from Slater orbitals
with the same orbital exponent for 8 and d functions, the
best energy obtained for H, was only =1,088 a.,u., for the
equilibrium distance l.l} a.u., We note that this value is
less then that given by approximation (3) of Huzinaga, a
twé configuration wave function, but employing different
orbital exponents for the 8 and d functions, In the calcul-
ations on Kg, the expansion center was on the central
nucleus for the linear symmetrical configuration and at the
center of symmetry of the molecule for the triangular con-
figuration. The best energies obtained were ~l.163 a.u,
and ~1.204 a.u, for the linear (R=l.55) and triangular
cases (R,;,=1.56), respectively. Although the energy of
K; is not known, we can compare these results with the
corresponding values obtained by Hirschfelder and others
(10, 11) using the valence bond method, namely, =-l.2476
a.us for the linear case (R=1,60) and ~1,2925 a.u. for the
triangular case (R=1,82), We shall discuss thasa caloul=~
ations more fully in Chapter IV,

Bueckinghem, Massey, and Tibbs (1l2) carried out a one-
center self-consistent fleld calculation for methane. They

treated Eﬂh as an eight~electron problem and assumed the
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wave function had complete spherical symmetry; that is,

they included only the configuration (23)2(2p)6, where the

8 and p functions are Slater orbitals centered on the

carbon atom. They also averaged the nuclear field over all
orientations about the ecentral nucleus. The calculations
indicated the system was stable by ninety per cent of the
experimental binding energye. This is a surprisingly large
energy when one considers that the spherically symmethic
funectlon used does not reflect the tetrahedral character of
the molecule, and that ordinary configuration interaction
was not included., It should be empharized thet in dealing
with a configuration such as (23)2(2p)6 for which the

charge cloud is sphericelly symmetric, there is no addi-
tional approximation implied in using a Hamiltonian in which
the nuclear field 1s averaged over all orientations. The
basic reason for this is that when the charge density is
spherical the electron-nuclear interaction energy is solely
determined by the first term in the expanaion of the nuclear
potential in spherical hermonics (13).

Nesbet (6) has repeated and extended this calculation
and has established that the value reported by Buckingham,
Massey, and Tibbs was ln error. The calculated binding
energy is actually negative instead of positive as reported,
Further calculations by Nesbet indicate that the addition
of higher spherical harmonics leads to very slow conver=-

gence to the true electronic energy of CHh.
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Banyard and March (13) used similar methods to obtailn
one~center wave functions for the ammonia and water mole=-
cules, Using one=-electron analytical functlons centered on
the nitrogen and oxygen atoms, they constructed the ten~
electron determinantal wave function corresponding to the
spherically symmetric configuration (13)2(23)2(2p)6 and
minimized the energy with respect to the parameters in
the one~electron functions. The molecular energies thus
obtained were quite poor, for example, =75.,00 a,u. for
water, compared to the experimental value =76.47 a.u.
However, when these wave functions were used to calculate
X-ray scattering factors, good agreement with the exper-
imental scattering factors was obtained.

We note in passing that one~-center calculations of a
similar nature have also been carried out by Bernal (1l)
and by Carter (15) with equally disappoiniing results.

These results would seem to indlcate that one-center
calculations of the total electronic energy are in general
not at all practical for systems as complex as CHH and
KBB and are only moderately so for simple two and three
electron systems, such as H, and H;. It should be noted,
however, that all of the above calculations, except that
of Nesbet on cHh' were carried out by hand with a very
limited set of basis functions and only & very few config-
urations. But i1f the calculations are done on electroniec

computers, expansions of thirty and forty terms become
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qulte feasible, especially for two and three electron
systems. From this point of view then, Huzinaga's and
Handler!'s results seem quite encouraging. It seems clear,
however, that eight and ten electron problems are at
present somewhat beyond the scope of the one-center method.

The one-center calculations described above all make
use of "ordinary" configuration interaction; that is, the
molecular wave function 1s sxpressed as a series of con-
flgurations formed from a complete set of snalytic one-
electron functions which are introduced right from the start.
Recently, however, Nesbet (16) has shown that the config=-
uration interaction problem is greatly simplified if the
calculations are based on an orthogonal set of self-consist-
ent orbitals satisfying the Hartree-Fock equations (that is,
orbitals obtained by the Roothaan procedure){(17). Unfortu-
nately, this simplification did not come to the author's
attention until the present investigation was more than half
overe. Consequently, the configuration interaction method
used here is the conventional one described by Condon and
Shortley (18) and by Boys (19).

When one-center calculations including the super=-
position of many configurations are carried out, the
question of what basic functions to use is of minor impor-
tance. Weve functions of any desired accuracy can in
principle be obtained by the superposition of a sufficiently

large number of conflgurations. But when the number of
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ccnfigurations‘ia limited, as in practice it must be, the
choice of basis becomes very important., Unfortunately,
there are really no adequate criteris for making the choice.
The expansiocn postulate, of course, requires that the basic
orbitals be members of a complete set. Moreover, we require
that all integrals between the basic orbitals be readily
evaluated. These w uld appear to bé the minimum require-
ments., The following additional features, although not
really necessary, would be most desirable from the point

of view of simplifying the numerical work.

1. It 1s desirable that the basic functions form an
orthonormal set and that the basic integrals between these
functions be obtained by algebraic rather than numerical
methods, thus eliminating the rather laborious transfor-
mations of the basic integrals from the non-orthogonal
basis to the orthogonal basis, Also, the evaluation of the
final energy matrix elements as well as the solution of the
secular equation 1s greatly simplified if the whole cal cu~-
lation is carried out in an orthogonal basis. It should be
understood, however, that the use of orthogonal functions is
purely a matter of mathematical convenlence and has nothing
to do with the physicesl theory.

2. If the number of non-linear parameters is kept to
& minimum, the variational problem will be greatly simplified.
The problem of simultaneously verying many non-linear para-

meters is an enormous one and must always be treated by trial
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and error methods., The linear parameters, of course, are
nicely handled by the mechanics of the varlational principle
itselfl,

3. There should be some systematic method for choosing
the basiec functions., This feature in particular is lacking
in most of the conventional approximation methods,

o Finally, the functions chosen should lead to rapidly
converging expansions, Lowdin (20) has investigated this
point for two~electron systems and has been able to construct
that set of one~electron functions, termed natural spin
orbitals (ggg), which when used to form configurations, leads
to the most rapidly converging expansion. This analysis is
of no help, however, in choosing initial functions, since
the construction of the NSO's requires that the variational
problem be already solved.

Generally speaking, no known class of functions possesses
all these features. However, Shull and Lowdin (21) have
recently suggested a set of functions which meets these
requirements in many respects, namely, the complete set of
orthonormal (2q+2)-order associsted Laguerre functions as
radial functions multiplied by the spheriecal harmonics as

angular functionst

z Qr 29+2 -2
qu(er) Ln+q+1(2zr)’ qu(e,j), (2.2)
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where the L are the (2q+2)-order Laguerre polynomials, 2

is an adjustable parameter, and qu is a normelizing

factor, The required integrals between these functions are
all easily evaluated, The eigenvalue spectrum of the set

is entirely discrete, which is apparently of importance for
convergence (21)., Of great practical advantage is the fact
that only a single orbital exponent occurs for all functions
with the same angulsr dependence; this renders a great
simplification in the computatlional work, both in evaluating
the integrals and in solving the variationalrproblem.

These functions were very early used by Hylleraas (22) in
applying configuration interaction to the ground state of
the helium atom and, more recently, have been used in
similar ealculations on helium and helium-like ions by
Lowdin and Shull (23), Slater (24), and Holgdien (25),

A very general set of functions for which all the
integrals occurring in the one-center method can be eval-
uated in closed form has been given by Chen (26). Thia is
the set

“l agzpK
N Tl e Ky (0,4), (2.3)

where k is some prefixed positive number end z>0, For k=l
we have the familiar Slater functions, which for fixed z
(n=1,2, ¢« o« o« ) form a complete set with discrete eigen-

value spectrume. For k=2 we have the complete set of Gaussian
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funetions., The cases for k other than 1 or 2 have not been
investigated, but presumably also form complete sets (for
fixed z).

Nesbet (6) has found the Slater functions particularly
convenient to use in one-center expansions since they pro-
vide a wealth of non-linear parameters, which when properly
varied, lead to very rapid initial convergence, although
subsequent convergence as more terms are added may be quite
slow, FYowever, the many different exponents make the eval-
uation of the basic integrals correspondingly more difficult,
Moreover, the Slater functions with different exponents form
an overcomplete set, which, as has been pointed out by
Léwdin (27), may occasionally lead to difficulties in solving
the secular equation.

In & recent note Parr and Joy (28) have suggested that
improved one-center expansion functions might result from
dropping the requirement that the principal quantum number
n in (2.3) be integral. Although a single configuration
constricted from such functions might very well be a superior
starting function, it seems vepry unlikely that the ultimate
convergence as more terms are added will be much affected,
Moreover, the variastion problem has been greatly complicated,
since now the principal guantum number, a&s well as the
orbital exponent, is a non-linear parameter to be chosen by
trial and error.

Another possible system includes the use of the complete
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set of exponential functlons, e‘n”qu(G.d), n a positive
integer, as 1s currently being used by Boys (29, 30).

As has been shown by Shull and L3wdin (21), the
hydrogen-like set of functions, with exponential dependence
z/n, 18 not a suitable system since convergence cen be
obtained only 1if account is taken of the rather annoying
continuum wave functlons, without which this set 1s not
complete,

We have based all our one-center calculetions on the
complete orthonormal set of associated Laguerre functions
(2.2), since for the two electron systems considered here
this seems to be the most convenient set to use from the
point of view of Integral evaluation and solution of the

variational problem.
Be Caleulation of "Localized" Observables

We have seen that the direct calculation of total
electronic energies of molecules by the one-center method
is limited to relatively simple hydrogenic systems. Allen
and Nesbet (5, 6) have recently developed a modified method
which retains all the advantages of the one-center approach
but is at the same time applicable to more complicated
molecular systems. In particular, systems with inner shell
electrons not on the expansion center can bhe treated.

Instead of ealeulating total energies directly, only those
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"localized" quantities are calculated which are primarily
dependent on the electronic wave function in the neighbor-
hood of a single atom, The reasoning behind this method 1is
as follows:

Since in any actual one-center calculation only a
relatively small number of basic functions can be considered,
it will be extremely difficult to approximate the molecular
wave function to equal accurscy throughout all regions of the
molecule., Hence, except for certain very simple systems,
properties such as the total energy or dipole moment, whieh
’depend strongly on the value of the wave functlion over the
whole molecule, cannot be calculated with ocne-center wave
functions. But, given & wave function which 1is sufficiently
accurate in the region of a single nucleus, it should be
possible to calculate those molecular quantities, such as
the electronic coupling with nuclear moments of the force
field on the nucleus, which heavily weight the electron
density in the vicinity of the nucleus. It is assumed that
the "best" wave funetion in the viecinity of a given nucleus
can be obtained by carrying out a one-center configuration
interaction caleulation sbout that nucleus of the total
electronic energy of the molecule. The wave function
obtalned cannot be expected to be of practical value beyond
the nearest-neighbor nuclei to the expansion center. More-
over, the energy values obtained will in general be very

poor and will have significance only insofar as the lowness
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of the energy value is an indication of the accuracy of &
variationally determined wave function. It is not at all
obvious, however, that a wave function which 1s an admittedly
poor approximation to the complete molecular wave functipn
will be a good approximation to the true wave function in
~the region of a gilven nucleus simply_because.it has been
obtained by a variational calculation. This point could be
easlly checked by carrying out calculations on a system such
as KE for which the exact wave funetion 1s known, but this
does not seem to have been done as yet.

Two molecular observables which can be easlly calculated
by this method are the force on a given nucleus a, given
by the mean value of -F;/bi, and the nuclear electric quad-
rupole coupling. constart, which is proporticnal to the mean
value of l/bz.

One feature that makes this method very attractive is
that it can be adapted to the indirect ca;culation of
electronic energies of molecules, or rather, tc the cd cu-
lation of the difference of electronic energy between two
isoelectronic systems. The proeedure'depends on the Hellman-

Feynman theorem (5)

&> = (FE, (2.4)

where the average values are taken over the exact wave

functions for the Hamiltonian. For certain parameters A ,
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the derivatives of the Hamiltonian are sums of "localized"
Dperatmps’for which it should be possible to obtain éceu-
rate mean values using wave functilons obtained from one-
center energy calduiations about the appropriate nuclel of
the molecule. The difference in electronic energy between
two isoelectronic systems, characterized by different values
of the parameter )., can then be obtained by integrating the
mean values of these derivative operators.

A simple exemple will lllustrate the method. Conslder
the isoelectronic systems Be, L1H, He,, and all the inter-
mediate systems with fractional charges on the nucleil such
that the sum of the nuclear charges adds up to four. The.
electronic Hamiltonien for a four electron system may be

written

L 2
I RE LARE N N VN Z iy (28)
where Za and Zb are the charges on nuclel a and g, respec-
tively, and za+zb=u. By differentiating with respect to the

charge Za on nucleus a we get the electronic potential

L
(0/9Z )H = 3 <1/r_.. (2.6)
a i=1 al
For a fixed internuclear distance, the mean value of this
electronic potential must be & smooth function f(Za) of the

nuclear charge at center a. Similerly, the mean val ue of
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Einl/bbi is 8 smooth function r(zb) of the charge at center
b. The wave functions used in taking the mean values must

be obtained by separate one-center energy calculations abéut
centers a and b respectively., Separate one~-center calcula-

tions are required for each value of Za and 2. in the range

b
of Iinterest, Since

aB) = oz (H)az, + 3oz, (H) Az,
= 1(z )z, + £(2,)dz,, (2.7)

the difference between the electronic energy of LiH and the
energy of Be is given by

o jo
Eﬁj}f(&a)dza + lf(Za)dZa, (2.8)

since f(Zb) 1s eclearly equal to f(Za) over the range Oszaél.
Since f(Z,) is determined only for a few values of Zgs AE
mast be obtained by graphical integration. Clearly, the
one~center caleulatlions about a when Z, 1= small will be less
accurate than for Za large in a case such as LiH, but calcu~
lations must be made in both cases.

No detalled calculations using this method have been
reported., Preliminary results by Nesbet on the Hea, LiH, and
Be systems seem quite encouraging, however. It is too early,

however, to Judge the ultimate worth of this approsach.
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I1I, ONE-CENTER CALCULATION FOR THE HYDROGEN MCLECULE

We now apply the one-center method outlined in the
preceding chapter to calculate the total electronic
energy of the ground state of the hydrogen molecule. A
preliminary report (31) of this investigation was given at
the Molecular Quantum Mechanies Conference held in Austin,

Texas, December 7-9, 1955,
As The Configuration Interaction Problem

l. Approximate ground state wave functions

Let ¥, (m=1,2, « « « ) be 8 complete orthonormal
basic set of one-particle functions (spin-orbitals) centered
at the origin of coordinates. We seek a normalized approx-
imate wave function for the ground state of the hydrogen

molecule of the form

g(xl;xz) = ZKGK %K(xl’xa)’ (3.1)

where the Q K(xl,x‘?) are normalized antisymmetrized product
wave functions (Slater determinents) for the various con-
figurations of the molecule, and x, = (ri,si) is the space-
spin coordinate of electron i. (A configuration 1s here

defined as the selection of any two one-electron functions
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+m'¢n from the complete set ﬁpm}z in addition, if m<n the
configuration is said to be ordered snd for convenience 1is
denoted by the abbreviated symbol K).

The best set of coefficlents cK is determined by
minimizing the energy E = Jﬂ;(xl,xe) Hopf(xl,xe)dvldvz,
where Bop is the spin-free electronic Hamiltonian for the
hydrogen molecule, containing only kinetic and electro-

static termsj namely,

2 2 1 1 1 1 1
B =-3V, =3Vo =2 =2 =2 -2 += (3.2)
oP 1 2 Ty Ty Fpg Tpp Fpn

(This Hamiltonian is in atomic units) The best coefficients

OK satisfy the equations

% {(Llnopl K) - E SKL} Cp =0, L=1,2, o & & (3.3)

while the corresponding best energy E 1s the lowest root of

the secular equation

det {(Lmopl K) - E§.} =0, (3.4)

where

<L|Hole> = ffL Hop{xK av. (3.5)

We note that in this secular equation the E's occur
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only on the principal diagonal and with unit coefficlents.
This form of the secular equation is especially convenient
for numerical solution using matrlx methods, particularly
iterative ones, and is a result of our having chosen the
one~electron functions to be orthogonal,

The one-electron functions ¢, used in the construction

of the determinantal wave functions are products of the form

(8)

o
) = , .6
Y m(x “m“"{a(s) (3.6)

where the g, (r) form a complete orthonormal set of space
orbitals depending only on the one-electron space coordinate
r= (r,G,J). and «(s) and A(s) are spin functions. Here
(r,8,4) refer to a coordinste system with origin midway
between the two nuclel and with the z-axis along the inter-
nuclear axis,

The one-electron space orbitals g(r) were chosen from

the complete orthonormsl set of functions
Z -
Baqm = Bng (W)Y, (0,8) (347)

| 3/2{(peg- % g 2942 -
Ryq(x) = (22) {{%3} 232 (x)e7E,  (3.8)

where x = 2zr. Here an(x) is the assoeiated Laguerre

orthogonal function of order 2q+2 and Ling

(2q+2) ~order assoclated Laguerre polynomial of degree

l(x) is the
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n~g=l defined by

-x)} (3.9

n+q+l =0 (n-g-1-1)1(2q+2+1)1 11t

The quantities n and ¢ are positive integers such that
nzq+l; z is a varisble parameter called a scale factor (or
effective nuclear charge, although this terminology has
little meaning here); and qu is the usual normalized
spherical harmonic with the particular choice of phases as
defined by Condon and Shortley (18, p. 52).

A detalled discussion of the associated Laguerre
functions is really unnecessary here, since adequate
discussions can usually be found in any book on the special
functlons of mathematical physies and chemistry, for example
(32, 33, 34)s However, in Section A of the Appendix, we
have summarized 2 few of the important properties of these
functions that have been particularly useful in this inves-
tigation,.

The associated Laguerre functions of any order are
included as a special case in the complete set of Slater

orbitals
* - el
qum(r) = (22)" %{(Zn)t} & el ear Y (0:8),  (3.10)

for it 18 easily shown that if Slater functions all having
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the same orbital exponent are made orthogonal by the
Schmidt proceas (27, p. 45), the associated Laguerre

functions, or linear combinations thereof, result; con-

sequently
g2 = 55 G, (nq) X2 (3.11)
nqm ;;é 11097 Rq+1+4i,qm, .
where
&
1 f(n-g-1) 1 (n+q+l)t(2g+2+21)1}®  (3.12)
01(na) = (-1 B

Here ci(uq)ﬂcni [we drop the q index since both (3.10) and
(3.11) are already diasgonal in q] is the ith element in the
nth row of the Bchmidt transformation matrix that transforms
the overlap matrix [ai*q*1,3+q*l] for the 3later functions
{3.10) into a unit matrix, that is,

]
(Cpal (834q+1, 34q+2) [ng) = [1]. (3.13)

The radial funetion Rpq(x) 1is similar to the radial
eigenfunctions for the bound states of the hydrogen atom,
but instead of the orbital exponent varying as 1/n, the
same exponent 1s used for all an. Hence these functions are
more concentrated in space, for the high n values, than the
hydrogenic functions. On the other hand, the quantum numbers

n, q, and m have essentially the same meaning, so that we
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may apply to the ﬂz the same spectroscopic notation that

ngm
is employed to dasagibe the bound states of the hydrogen
atoms In addition, we shall add subscripts when necessary to
indicate the value of the magnetlc quantum number. Thus, for
example, the functions (3.7) will be denoted in general by
fps 8nd in particular by nsaﬁnao, npoxﬁﬁlﬂ, ndl“”ﬁal’ and so
forth., We prefer this notation to the usual spectroscopic
notation epplicaeble to one-~electron orbitals in a diastomic
molecule, namely, ns, np¢, npw, ndo, ndm, . . + , since this
notation does not distinguish between plus and minus values
of m. Furthermore, we shall usually refer to the ﬂﬁ simply
as "Laguerre functions (orbitals)", although this terminology
is strictly applicable only to the radial function an.
Let us now return to the problem of further specifying
the approximate wave function (3.1). Since the ground state
of the hydrogen molecule is experimentally known to have the
symmetry 12;, we need consider only those TK'S which by
themselves or in combination with other {y's, have. this
symmetry. Now the most general antisymmetric two-electron

wave funetion that can be constructed from the spin-orbitals

dmd and ¢ 8 has the form
-3
?(xlsxa) = 2 {%31 Amdet(ﬁm‘*:ﬁnﬂ)

+ Bypdet(go,gio) + Cy det(gyl,4.0)  (3.14)
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This funetion is readily seen to be a sum of a singlet term
and the three components of a triplet term. We shell be
interested only in the singlet component which can be sorted
out by epplying the projection operator (35) lﬁ¢(1-§82)u
%(1~P£;). where § is the spin angular momentum operator and
?{é is the operator that permutes the spin coordinates of the

two electrons. We obtain
II(xl,xg) = 2‘%% Qmmﬁat(}‘mﬁpﬁmﬂ)

+ 2”%g§g an{ﬁetidgq, np) + det{ﬂd“'dmpi} (3.15)

By expanding the determinants, this funetion can be written
a8 & product of a pure spsce part and a pure spin part,
YPixy,xp) = 27%(@y8, - ap) Tiry,r,) (3.16)
12%2 LR TS T ALS TP 3.

I’(rprg) = Zm ﬂ‘mﬁfm(rl)d{r?)

-5
¢ 02 Thr8,(r) ¢ g (e 6 (r)}  (3.17)

msn

It is convenient to write (3.17) in the abbreviated form

Piryry) = S SumlBufn) * 3 Con (84 (3.1£)

mdn

where by (4,4, )we mean the normelized two-electron space
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function symmetric in the coordinates of the two electrons

defined by
(Bubn) = B,(r1)E (rp) m=n  (3.19)
(B = 228, (r )8 () + B (r)B (r} min  (3.20)

The spin part of (3.16) plays no further part in the calcula=-
tion and will henceforth be ignored,

In order for f(rl,re) to have Z; symmetry, it must
have rotational symmetry about the bond axis, be symmetric
under inverslion at the center of symmetry, and have positive
reflection symmetry across any plane containing the bond axis.,
The same restrictions, however, need not be put on the one-
electron functions in terms of which we expand 1er,r2), for
as long as the ome-electron functions in any configuration
are both even or both odd their product will be even; more-
over, the requirement of rotational symmetry about the bond
axis will be met as long as the m guantum numbers of the two
functions sum to gero. The requirement of positive reflection
symmetry further restricts the expansion to terms symmetriec
in the m quantum numbers; that is, not only must the angular
coordinetes appear as (dl—ﬁe), they must enter as the coszine
of M(ﬁ1~¢2), where M 1s an integer. Ixpressed analytically,
the configuration (ﬁ;#ﬁ) will have the proper symmetry only

if qgt+q, is even and m +m,=0. For example, the configurations
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(msns), (mando), (mdondo), (mdonig), (mpompO). and (mplmp_l)
all have Zg symmetry, while the configurations (msnpo),
(ndondl), (mplnpl) do not.

Note that a configuration of the type (mplnp_l) must
be symmetric in both the total and magnetic quantum numbers,

that 1is,
(mpynp_y) = %{mpl(l)np,l(e) + mp, (2)np_, (1)
+ mp(L)apy(2) + mp_(2)mp (1)) (3.21)

We have investigated the importance of the following
kinds of configurstions: ss, sdQ, 82 sio, slo, Sngs PoPgs
dodo, prO’ and P1P.y° Although not all of these configura-
tions were used at any one time, still a sufflcient number of
combinations were tried to permit a reasonably full evalua-

tion of the importance of each type.

2. Evaluation of the energy matrix elements

The energy matrix elements (LIHQPIK>, where fft(p{kﬂl)
and ?Ka(ﬁmﬁn), are given by the formula

lag le) = Jid b)) B, (B4 )av av,

= n{(elal m)§(1,n) + (11H;In)§(k,n)
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+ (k(H,lm) §(1,m) + (118,Im)&(k,n) + (kmlin) + (MIkn)}(B.zz)
where §{k,m) is the Kronecker delta and

(klEym) = [6,(1)(-4V5 - 2/r ) £ (1) av,
(3.23)
(kmlln) = {4, (1)4,(1)(1/r )¢, (2)4 (2)av dv,

The factor N has the value (2)-%{8(m,n) * S(k,lg

3. Evaluation of the basic integrals in the Slater repre-

sentation

In this and the next section we glve specific formulas
for all the integrals that can occur in molecular calcula~
tions by the one-center method. Formulas are glven for the
integrals in both the Slater and lLaguerre representations,
The reason we require the integrals in the Slater representa-
tion is that for the nuclear attraction and electron repulsion
integrals 1t is usually necessary to calculate the integrals
between Laguerre functions in terms of the corresponding
integrals between the Slater functions, using the functionsl
relation (3.11) connecting these two funetions. The nota-
tion is that of (3.10) for the Slater functions and that of
(3.7~3.8) for the Laguerre functions.

The integrals are most easlly calculated in terms of
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certain auxiliary functions. We introduce the following:

o0
T(n,q) = fo e rar= ni/q" O (3.24)

L oan
D(n,q) = 5 e ¥ rodr
0

e ,
=T lFl(l,n+2;q)

-q“

e (n+l)1 r
n+l 520 {n+r+l)! 1 (3.25)

H

A(n,q) = J e~ p? ap q>0
n} e $ Kk
= Do :Eg q /ki all q
= T(n,q) - D(n,q) (3.26)

5 3 4 X -
J(m,d;n,B) = IO [ X" ax 50 e Ay yn dy

ml n!l

L — o F (%/a+A) (3.27)
o

where
1 m
FRe) = (10" 3 (%F) (3.28)

Here lFl(l,n+2;q) is the confluent hypergeometric function;
see Sneddon (34, p. 32) for notation and definitions.
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Convenient mathematical relations for generating the A's,
D's, and J's by completely inductive methods are given in the
Appendix.

The basle integrals in the Slater representation are now
easily expressed in terms of these auxillary functions. The
integrations are elementery and involve only well known
standard techniques, Hence we give only the final results

and refer to (36; 18, p. 175) for the details,

(a) Overlsp integral.

2 z! : z z!
(anm.'zny q'm| ) = S(m,m‘ )S(Q’ Q' )ann'T(n+n' ,Z“"Z' ) (3.29)

z
where Nn is the normalization factor for the Slater functions

given by
z -
N = {r(2n,22)} g (3.30)

(b) One-center nuclear attraction integral.

(X:qmll/rllﬁ: q'm! )uS(m,m' )S(QcQ' )Hzn::lr(n.q.n: ~1,z+z') (3.31)

(¢) Kinetic energy integral.

t
'qlm'

(XZQMP%VQ, )L: ) = 2§(m,m')8(q,q" ’“Zﬂfi:
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X {(n—q-l)(n'-q-l)T(nﬁn‘-Z,z*z') - [;(n'-q-l)
+ z'(n~q-l)] T(n+n'=l,z+z') + zz!'T(n+n’, z+z')} (3.32)

(d) Two-center nuclear attraction integral.

oz z_z' _n+n! k
(X:Ath/rJ xzz qvm:) = §(m,m' mnﬂntRn ? % o (qm,q'm')

x Dlnent+i,d) + Alnen' -k, d)}  (3.33)

where point & ls a distance E from the origin. In evaluating
the integrel the z-axls is taken to pass through the point a,
as 18 customary. For a glven q and q', k takes on the

values k = q+q', . « +,[g=q'| + The quantity o« is equal

to (z+2')R. The quantity ¢¥ 18 defined by

™
ak(qm,q'm' ) '}/EE% fg@(qm) ©(q'm') O(km-m' )sin@d®  (3.3})

The ¢X's are tabulated by Condon and Shortley, pp. 178-9,
over a wide range of g's and m's.

(e) Electron repulsion integral.

(ep@1/r ) le()a(2) = (a(e(u)|1/r|b(2)a(2)

Z, %y %, %
a b d k

= N, Nnb an Nnﬁ S(ma+mb,mc+md) é e (qama,qcmc)
a ° ]
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x o¥(qm,qm ) R(ngn snn,) (3.35)

where ek 1s defined by (3.28) and

k

® n+n -9 r nb+n -Fr

k Py 2

R (n n 3mn, ) = I 5 k+l r, drldr2
>

= J(n +n -k-1,93n, +n,+k,F)
+ J(ny+ng-k-1,05n 40 +k,4) (3.36)

where re and r, are the lesser and greater, respectively, of
ry and Foe Also, dzza-kzs and Pazb-t»zd.
For those c¥'s not given by Condon and Shortley, we have

used the following formula for the special case m = m' = Q,

¢ (90,0'0) = §(2q+1) (2q'+1)]% (3.37)

,Lgl) (qng'-k)x(q'+k-q L(gtk-g')}
(Eg+1) (g=k)t 2 (g=a)t € (g-q')1

where k+q+q'=2g and |qg-q'|¢k<q+q'. This formula is due to
Gaunt (37).

4. Evaluation of the basic integrals in the Laguerre

repregsentation

The integrals in the Laguerre representation can now

obviously be obtained from those in the Slater representation
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by means of the defining relation (3.11) connecting these
two representations and the integral formulas of the preced=-

ing section. Thus,

(Bollgy) = Ej ¢;(a)c () (X, (K1 X) (3.38)

(BoBo [1/7 1 Frfa) = gZ: c,(a)c,(e)0, (b)C, (a)

¥ !k’

(XX) (3.39)

x (Xiljll/r N

12
where Gi(a), etc., denote the coefficients in the expansion
of the Laguerre functions 1n terms of the normalized Slater
functions X,.

The evaluation of the one-electron integrals is simple.
The matrix [XilKl]%] is written in square form and contracted
on the right with the column [bj(bﬂ to give the matrix
[X, 1514, ] wnich is then contracted on the left with the row
[Ci(a)] to give the integral (ﬁ;lﬁlﬂb). This numerical
transformation, however, is required only for the two-center
nuclear attraction integrals, since in the case of the
kinetic energy and one~center nuclear attraction integrals
there exist closed form expressions of quite simple form;
see (3.43) and (3.444) below.

The slituation is more complicated for the electron
repulsion integrals, since here we are dealing with the

numerical transformation of a four suffix matrix. The usual
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procedure is to write the matrix [?%l%'l/blZ'x&l&l as & two
suffix matrix [ﬁll/rlalt], that is, one row and column
corresponding to each pair of values of 1 and j. The corre-

sponding vectors
¢ (a,0) = fo,(a)c (0) + Cj(a)ci(c)}{l - #8149} (3.40)

are then formed, and by two contractions of these with
[?ll/r12|t] each of the integrals (%ﬂﬁell/rlzlﬂbﬁd) is found.
It is this transformation which is one of the most difficult
portions of the numerical calculations.

We have used a slight modification of this procedure,
however, which reduces the amount of computation necessary
by a factor of two or more. The method consists of expand-
ing ¢a¢? not in terms of products of Slater functions, as in
(3.40), but instead as a simple polynomial in r multiplied
by an exponentlial term and an angular term, that is,

pPtagtq, =(z,+z )r
e

i
?{a}%, = %ODp(a;c) r (3elt1)

Y
Qulg QMg
where N=n _+n -q -q -2. Kquation (3.39) can then be rewritten

(BB l1/r 16,85 = g?;Dp(a.c)Dq(b.d)(pll/rlzlq) (3.42)

where (pll/rlelq) is easily evaluated using (3.35) and (3.36)
We observe that the order of the matrix [pll/rlelq] is always
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less than or equal to that of the matrix [131%,1/b12|2&)51'
A corresponding reduction in the numerical work results.

We summarize below the formulas for the basic integrals
between the Laguerre functions. Detailed proofs for formulas
(3.43) and (3.44i) eare to be found in the Appendix, Sections
B and C.

(a) Kinetic energy integral.

l-*V lp’z' = 5% 8(q,q')8(m,m')

q'm!

{Li'n“?'z*(zq"';)S(n,n!)} n""q-l)l n""q"'l)i % '
Lat+6 (n’*q+1)1(n~q-1);} » n&n'(3.43)

(b) C(ne=-center nuclear attraction integral.

(B2 ol =1/0 | B ) = =2/(0#1) B(mym! ) 8(a,01)

ngm

(nv-q-l)z(n+q+1>x}%

(n'+q+l)t(n-g-1)1) ~ P$B" 3.k

(¢) Two-center nuclear attraction integral. Using

(3.33) we write (3.38) in the matrix form

nqm' 1/1‘ | nvq vt} = -z8(m,m') 2 °‘q+‘2 Fq'+3/2

x [Ci(nq{][ﬁij][cj(n'q’ﬂ (3.45)

This form differs from (3.38) slightly in that part of the
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normalization factor for the Slater orbltals has been in-
corporated into the transformation matrix so that Ci(nq) is

now given by

1
¢.(nq) = (-1)t Lp=g=1)i(nrq+1),17 (3.46)
1 (n=g=1~1)3i(2q+2+1) i1l
Here
}313 =« Fj % ¢ (qu,qtm') {D(i*j*'qw“*?*k: !‘42"&)
+ A(i+j+q+q'+1le-k, ?-{;E)} (3.47)

with the usual limits on k. Here o=22R and @=22'R. & 1is the
distance from the origin to point a, The z-axis is along the

line jolining the origin and point a.

{(d) Eleetron repulsion integral. We scale the integrals
with respect to za. that 1s, we let xﬂZZar. Further, we
define dm(iévvc)/é and Pw(vb+vd)/2, where vb=zb/za, vczzc/za,
and vduzd/za. Then (3.42) may be written

[Bafe (1/r ol A 8g] = 2 8lmgtmyym 4my)

X [Di(a,c)][Eijlle(b,d)] (3.48)

where, from (3.35) and (3.36)
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Bij = 2§c (qama,qcmc) ¢

x 7 (14a 40+ 1,05 Jrayragh2ek, B)

+ J(j+rqytaatl=k,p; i+qa+qc+2+k.°¢)} (3.49)

The coefficients in the expansion (3.41) are given by

+3/2 14 )
D, (a,¢) = v:“ / gge c (a)c, (e vi r
(3450)
q +3/2 q +3/2 -
= y. D a r J-r
Dj(b,d) vy V4 gio Cr(b)vb Oj-r(d)vd

where Cr(a) = Gr(naqa), ete. Here i=0, 1, . . ,ng+n =q.~q,~2

and j&O' l, « s 5 nb+ﬂd+qb'qd*20

5« Numerical solution of the eigenvalue problem

The IBM 650 computer was programed to carry out all the
principal computational processes involved in the one-center
and HY

2 3

molecules. A description of these routines will now be

configuration Interaction calculations on the H

glven. However, a detailed discussion of the inner workings
of the routines will not be attempted here., The programs
described, with instructions for using them, are available

from the author upon request.
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Tha numerical calculations are convenlently divided

~ into three relatively independent stages: (1) evaluation
of all required one and two slectron integrals over a given
set of basis functions, (1i) construction of the configu=-
ration interaction matrix elements between the various
configurations from these basic integrals, and (iii) diago=-
nalization of the configuration Intersction matrix,

Two routines were required for the first stage of
calculation, namely, & nuclear attraction Integral routine
and an electron repulsion integral routine. The klnetic
energy integrals are easily calculated by hand., The 650
routine for the nuclear attraction integrals is based
directly on equation (3.45). The routine calculates, as
a block, all’possible integrals between any two given sets
{fnq} (n=a1, . . o, n .y &nd Pnrqd (ar=q'4l, . . o,
n’max) starting with the minimum values of n and n' and
proceeding to the maximum values. Therefore, it is not
possible to calculate a single integral (ng)l/r,ln'q')
without calculating all the integrals for lesser values of
n and n'e In practice this is no limitation sinece the
integrals ususally required aret hose for the small values
of n. There is éo restriction on q; n, however, cannot
be greater than gq+l0, Furthermore, there are no restrictions
‘an o and B3 in particular, the distance R can be reduced

to zero (ai=g=0) without complications, in which case the
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routine gives to eight figure accuracy the same result as
equation (3.4)).

As input the routine requires only the ck's, the C3(nq),
the values of @, 8, q, q', and maximum values of n and n',
Although the accuracy depends on the size of the matrix
multiplication, it is usually between seven and eight
significant figures for all values of the parameters. In
typleal cases, the time required per integral is about two
seconds.

The calculation of electron repulsion integrals is
based on equations (3.48-50). Because the process of matrix
contraction in (3.48) involves considerable differencing,
it is necessary to use double precision floating point
arithmetic throughout. This makes the calculations quite
lengthy; for instance, more than forty-five minutes are
required to calculate the 210 (ss)ss) integrals for the set
ls, « « «y 68, Here, as in the nuclear attraction integral
routine, there are no restrictions ond, 8, or the q's. The
matrix [813] given by (3.49) cannot exceed 20x20. The n
quantum numbers are restricted accordingly. The ck’s are
not computed by the routine. In fact, for large values of
q, the calculation of these may prove to be the most difficult
part of the whole calculation,

In all cases, the accuracy of the integrals is at least

nine significant digits for all values of the parameters,
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This, of course, 1s an accuracy far beyond the immedilate
requirements of this investigation.

For the second stage of the calculation, & program
was construeted which compiled the configuration interaction
matrix elements, using formulas (3.22) and (3.,23), from the
basic one and two electron integrals, Thls routine can be
adapted to one~-center calculations on (1) the spherically
symmetric component of any two-clectron atomic or molecular
system, (2) 13 states of atoms, and (3) 2 states of linear
two-alaetron molecules such a8 H, and linear H;. The one
and two electron integrals, along with suitable identifi-
cation, are loaded into the 650 in table form along with
the configuration identification (in terms of the n and g
quantum numbers of both functions). To construct a matrix
element between any two configurations the program first
carries out the various tests indicated in (3.22) and then
obtains the required lntegrals using the Table Look Up
feature of the 650, A special subroutine is required for
the integral (lelm). This subroutine, in general, 1is
different for molecules with different nuclear configurations.
The output of the routine is the complete configuration
interaction matrix in triangular form.

The configuration interaction matrix was solved either
for all the roots and vectors or just for the lowest root

and vector alone. Routines for carrying out both of these
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processes have been written for the 650 by Dr. Keith
Howelle. The routine for obtaining just the lowest root
and veector is based on the well known power method. 1In
this method an arbitrary trial vector x0 1s chosen and a
new vector xl is computed by means of the matrix multipli-
cation ﬁxa=xl. This process is t hen repeated to give
Hxl=x? and 1s continued until xP*l=cxP, that is, until the
matrix multiplication yields a vector xP*l which differs
from the preceding vector xP by only a constant factor.
Then, except for normalization, xP 1s the eigenvalue corre-
sponding to the eigenvalue ¢. It can be proved (38) that
such a process converges on the dominant root (i.e., the
one with greatest modulus) and corresponding dominant
vector. (Note that we can easily make the lowest root of
the matrix H the dominant root simply by adding a suitable
negative constant to the diagonal elements.) The largest
matrix that we have solved by this method is a 39x39.
Starting from an initial trial vector (1, O, « « « ), about
two and one~half hours were required to obtain the eigen-
value stable to eight figures. A comparable time for a
20x20 is about 45 minutes.

The routine for obtaining all roots and vectors uses
the rotation method. In this method the eigenvalue problem
is written in the form V'lﬂv = E, where H is the configuration

interaction matrix whose eigenvalues are the elements of the
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diagonal matrix E. The vector Vi corresponding to the
eigenvalue E; 1s the i-th column of the matrix V. The
matrix V is obtained as the product of a number of simple
unitary transformation (rotation) matrices Ry 4 which
successlively reduce the i,j elements of the originsl matrix
to zero. It can be showr that if this process is carried
far enough, eventually all the off-dlagonal elements

will be reduced to zero. Moreover, the convergence can be
shown to be quadratic.

Throughout our calculations we have mainly used the
power methods Thlis 1s because we have been concerned
~mostly with large matrices (i.e., greater than 20x20) and
in this case the power method is more efficlient by a factor
of about one and one-hslf to two. For small matrices,
however, the rotation method is more efficient than the power

method,

B. Results

The results of the one-center caleulations on the
hydrogen molecule are summarized in Tables 1l-7. The data
refer to the observed internuclear distance of 0.7395 A
or l.4 a.u. Minimization of the energy with respect to the
Internuclear distance was not attempted in any case.

All energies given are total energles, that is, the sum
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of the electronic and nuclear repulsion energies at the
equilibrium distance; no allowance has been made for zero
point vibrational energy. Inclusion of this would mean
adding about 0.0l a.u. to the total energies given. The data
are tabulated with respect to the parameters in the nuclear

attraction integrals, that is, 2z, R, where z_ is the scalse

q q
factor for the Laguerre functions with azlimuthal quantum
number q and R 18 the internuclear distance.

No attempt has been made to give the expansion coef-
ficients for all the various trial funections, since such a
tabulation would be quite lengthy and serve little useful
purpose, The expansion coefficients have been given for
only two functions, namely, the two best expansions obtained
in this research (Tables 6 and 7).

We began our calculation by first solving the wave
equation in the spherically averaged approximation.' The
results for configurations up to 6s° are tabulated in Table
l. Golumna two to five in the table refer to expansions
of 6, 10, 15, and 21 configurations, respectively. The trend
in the energy values shows clearly that with 21 configurations
we have come very close to the limit to be obtained with s
orbitals only. The best energy obtained for a 21 term
expansion was =-1.04469 a.,u. for a scale factor of 2.071429
(parameter value of zgR=2,9). This is 89,0 per cent of the
total energy and 25,7 per cent of the binding energy. Although
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this energy 1s still not as low as even the simple Heitler-

London-8ugiure result (-1.1160 a.u.)(See Table 8), it is

nevertheless promising that these relatively lnappropriate

spherical orbitels should provide as much binding as they do.

Teble 1, Total energy of the hydrogen molecule in the
spherically aeveraged approximation for various
numbers of (88) configurations. Energy in
atomic units,

Terms up Terms up Terms up Terms up
"ot to 382 to Ls2 to 5a° to 682
1.1 -1,00624 -1.03095
1. -1.01949 -1.0338L -1.04091 =-1.,04337
1.7 -1.03160 ~1.04116 -1.04358
1.8 -1.0341h -1.04234 -1,0l438)
240 -1.03715 ~1404349 ~1.04377 -1.04390
243 ~1.03714 -1.04328 ~1.04380 ~1.,04380
246 -1.03143 1041436
2.9 -1,01808 ~1.03668 -1.041459 «1,0441169
3.2 ~0499398 -1.04363 «1.0L 4116
3.5 -0.95585 ~1404047 -1.0437h

We next investigated the effect of adding (sd,) configu=-

rations to the spherically symmetric orbitals.

Since
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expansions in 21 (ss) configurations do not gain enough

in accuracy over expansions in 15 configurations to justify
their additional complexity, in all subsequent calculations
we limited ourselves to at most 15 (ss) terms (i.e., up to
5&2). The results obtained by adding 5 (ado) and 15 (ada)
configurations to the basic 15 (ss) configurations are
tabulated in Table 2 for & wide range of values of the s
and 4 scale factors, For 30 configurations, the best
energy obtained was -1.12250 a.u. (for 2z R=z4R=2.9), which
i8 now better than the Heltler-London-Sugiura result but
8till less than the SCF result (~-l1.134 a.u.). Thus, using
only 8 and d orbitals, we have accounted for 95.6 per cent
of the totael energy and 70.4 per cent of the binding energy.
Comparison of the results for 5 (sdo) and 15 (Sdo) terms
indicates that the limiting value of the energy that can

be obtalned with (ss) and (sd,) terms only is close to this
best value,

In Chapter II we reviewed previous calculations by the
one~center method end pointed out that Huzinaga (1) and
Handler (2) have both carried out one~center expansions
for Hy based on 8 and d orbitals only. We pointed out
further thet the best result reported by Huzinaga, ~1.1397
a.ﬁ. for two 8 and one d orbital, was no doubt in error.
This value is dlearly not consistent with the data in Table

2. However, Handler's result, «l.0878 a.u. for three (ss8)
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Table 2, Total energy of the hydrogen molecule using
(ss) and (sd,) configurations. Energy in
atomic units.

zgR zgR 15(ss) + 5(sdy)? 15(s8) + lS(ado)b
1.7 1.7 -1.064458

2.0 2.0 ~1.07606

2.3 2e3 -1.,08771

2.6 2.6 -1.09889 -1.12126
249 249 -1.10830 -1,12250
3.2 3.2 ~1.11459

3.5 3.5 -1.11660 -1.11930
Tl 2.1 -1.07700

17 2.55 -1.0963L

2,0 3.0 ~1.,10958

243 345 -1.11773

2.6 3.9 -1,12116 -1.12137
2.9 he35 -1,12017

l.h 2.8 -1.10121

1.7 3.4 -1.11676 -1.12059
2,0 4.0 -1.12039 ~1.12060

®18%, 1s2s, . . ., 582, 1s3d,, 283d,, - + ., 583d_.
blaz, 1828, . 8 ey 532’ 183d°, e« o ey 583&0, lskd
e ey 585&00

o’ *
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PTable 2. (Continued)

zgR  2gR  15(ss) + 5(sd,)*® 15(s8) + 15(sd )P
2.3 o6 -1.,12109
2.6 5.2 -1.10896

1.1 3.3 -1.10035

1.7 5.1 -1,10953 -1,12102
2.0 6.0 -1.09487 -1.12112
2.3 6.8 ~1,0808Y ~-1.12024
1.4 5.6 ~1.09790 -1.12101
1.7 6.8 -1.08191 -1.12001
2,0 8.0 -1.06740 -1,11776
2e3 9.2 -1,05787 ~1le11345

and three (sd,) configurations, 1s in essential agreement
with our results, although his energy value is low due to

a poor choice of scale factor (zg=zdal.07lu).

remove this discrepancy, and as a further check on our

own calculations, we have repeated the final stage of

Huzinaga's caloulation in its entirety.

For his final approximation, Huzinaga used the three

term expansion

In order to



5h
g(rl!rz) = i%l ci ﬂi(rl’r‘?)
By(ry,rp) = {5,(1)+0.25s, (1)} s, (2)+0.255, (2)}

(e ,r,) = {sl(l)—rO.ESSu(l)} a,(2)

+ du(l){§1(2)+0.253u(28

ﬁg(rl.ra) = du(l)du(E) (3.51)
where the orbitals s, XiC’)O Xh,OO’ and dlL XL;ZO are the

normalized Slater arbitals (3, 10) centered midway between
the nuclei. Note that the sl and sh.are not orthogonal and

that the secular equsation in this case 1s

ot ( Hij Sy ) = (3.52)
where Hijwjﬂiﬂopﬂjdvldva and Sijw‘f¢iﬁjdvldv2.

Carrying through this calculation, one obtains an energy
of -1.106 a.u., whlch is considerably above the value ~1.1397
a.u. reported by Huzinaga., We further checked this result
by carrying out the calculation based on the slx configura-~
tions 818;, slsu, 8hsh' Slﬂu’ sudu, and dudh' This six term
expansion must of course give a lower energy value than the

three term expansion (3.51). The value obtained was -1.109
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a.,u, We conclude that Huzinaga's result must be in error.
We next investigated the effect of adding the axially
symmetric functions p,, fos Bos iG, 10, and n, to our 8
and d, basis functions. From these eight types of functions
we can construct a total of twenty-four different types
of IZ; configurations., Of these only a few will be
important in lowering the energy. We can estimate which
ones will be important by comparing the values of the
squares of the matrlx elements between these states and the
(ss) states with the difference in the corresponding
diagonal energies. That is, the quantity (Hid)a/(ﬁii'ﬂjj)
is a rough measure of the importance of the state ‘j in
- lowering the energy. Here g3 may be either a solution of
the configuration interaction problem prior to the addition
of the atate ﬁj (bordered determinant approximation; see
Condon and Shortley, p. 40) or simply the state with lowest
diagonsl energy. Only if the interaction matrix elements
are fairly large, and if the difference between the dia-
gonal energies 1s not too great, will the added state
appreciably lower the energy. For example, states such as
(8g5), (sio), and (ana) interact with (ss) states only
through the nuclear attraction operator. We expect these
states to be important since integrsls over the nuclear
attraction operator can be made quite large by a proper

choice of the g, 10, and n_ scale factora. Of course, the

o
scale factor which maximizes the matrix element Hij may
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also raise Hjj to a prohibitively large value so that there
is a point past which further raises in the scale factor
will ba\detrimental. On the other hand, states such as
(dody)s (dggg)s and (8og,) have small or zero matrix elements
with (s8) states since the coupling here is by means of the
electron repulsion operator. The integrals for this operator
usually have much smaller values than the nuclear attraction
integrals and are also less sensitive to scale factor
variations. Hence, states of this type are not expected to
be very lmportant. An apparent exception is the state (pyp,)
which turns out to be of major importance; this 1s no doubt
due to the fact that in this case the electron repulsion
integrals (sp,/sp,) have fairly large values.

We have therefore examined only the following types of
configurationss (popo).(pofg),(doda).(sgo). (Bio), (810),
and (sny ). The relative importance of each of these types
in lowering the énergy may be seen from Table 3, Each
type of state was tested only against the (ss) and (sd,)
configurations. S8trietly, a term should be tested in
combination with all other terms. It is a general charsc~
teristic of varistional calculations, however, that the
improvement obtainable from any given term becomes pro-
greaéively less important as the number of other terms is
inereased., This is especially so if the maximum improve=

ment attainable is small. Moreover, we are justified in
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Table 3. Summary of the contributions to the energy for
Sxpansion consisting of 15 (ss) and 15 (sd_) temms.
I T N T St T vt SR
2.9 2.9 2.9 2.9 10(p,p,)° -1.13848x  -0.01598
3.5 3.5 3.5 3.5 6(pp)" -1.13551x  -0.01621
1.7 3.4 1.7 1.7 n -1.13602  -0,01543
2.0 40 2,0 2,0 " -1.13612  -0.01557
2.3 he6 2.3 2.3 " -1.13666  -0.01557
1.7 3.4 3.4 3.4 " -1.,13645x -0.01586
2.0 4.0 L0 4.0 " -1.13634  -0.0157h
2,3 4eb  Leb L6 " -1.13605  -0.01496
2.0 L0 3.0 3.0 " -1.13559x  -0.01499
2.0 4.0 2.0 2.0 5(ago)° -1,12334  =-0.00274

8rotal energy for an expansion congisting of 15 (ss),

15 (sd,), and N (qq') configurations. The letter "x" follow-

ing an entry indicates that the value given is the lowest
root of the approximate matrix constructed by considering the
solution of the lS(ss)+l5(ado) problem as & single config-

uration.

the latter are given in Table 2.

CAll terms up to sz.
dA11 terms up to hpg.

alﬁsgo, 235@0, ¢« o oy 535@0‘

bﬁifference between the energy values for the 1l5(ss)+

15(sd, )+ (qq') and 15(ss)+15(sd,) problems. The energies for
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Table 3. (Continued)

zgR zgR z4R zgR o§:§§§?) ?2?§%¥a (a.gﬁ)

2.0 110 2.0 6.0 5(sg°)° -1,12867 ~0,00807
2,0 440 2.0 8.0 " -1.13087 -0.01018
2.0 40 2.0 10.0 " -1.12885  -0.00825
29 29 2.9 2.9 9(sg)f -1.12557x  =0,00307
2.9 2.9 2.9 8.7 " ~-1.13286x ~0,01036
3.5 3.5 3.5 3.5 " -l.12636x -0,00706
3.5 3.5 3.5 10.5 " -1.,12978x  «0.01048
2.9 2.9 2.9 548 9(s1°)8 -1.12360x  =0,00110
249 2.9 2.9 8.7 " ~1.12451x =0.00201
2,9 2.9 2.9 1l.6 " -1.12442x  ~0,00192
2.9' 2.9 2.9 1.5 " ~1l.12460x =0,00210
209 2.9 2.9 8.7 9(s1)®  -1.12285x  ~0.,00035
2,9 2.9 2.9 1l.6 " -1,12309x  -0.00059
2.9 249 2,9 1lha5 " ~1,12309x  -0,00059
209 2.9 2.9 11.6 9(sn )t -1,12264x  ~0.0001}

rlaSsa. 23530; 38580.

11811%, 2sllng, 3slln, lslen, . . ., 3sl3n_,

1aég°, .« o ey 3a7g°.
E1s71,, 2871, 3871, 1s8i,, . . ., 3891,
hlsQlo, 2891, 3s91, 18101, « . ., 3slll .
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Table 3. (Continued)

sz zdR zqR zq,R ggzzéé') ?2?§%>a (3.5?)

29 2.9 2,9 1.5 9(sn)* -1.12273x  =0.00023
2.9 2.9 2.9 17.4 " -1.2273x  =0.00023
2.0 BeO L0  KaO 6(dodo)j -1.12089  =0.00029
2.9 2.9 2.9 2.9 " -1.12277x  =0.00027
2.9 2.9 2.9 2.9 9(p0fo)k -1.12261x  =0,00011
3.5 3.5 3.5 3.5 n -1.11943x  =0.0001}

Jperms up to 5d2.

k ,
2p Uf s 3p UL, Up UL, 2p 5F , o o o, Lp 6F .

rejecting any terms which at asny stage in the building up of
our wave function are found to produce a negligible improve-
ment in the energye.

Each of these types of configurations contains a scale
factor which should in principle be determined by the con-
figuration interaction. This i1s too laborious to be feasible,
however. The procedure adopted here was to determine the
scale factor for each type of state by first taking that set
of (ss) and (sdo) configurations which gives the best energy
contribution, freezing the s and d scale factors, and then

adding the new set of states and minimizing the energy by
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trial and error with respect to the new scale factor. This
procedure, of course, neglects any coupling that may exlist
between the scale factors for the various kinds of states.
It assumes that the best s scale factor when only (ss) and
(sda) terms are present is the same as the best s scale
factor when only (ss) terms are used, and that the best s
and 4 scale factor combination obtained using (ss) and
(ada) terms only will hold when additional states are added,
and 80 on as more types of states are added., That this 1s
in fact the case can be seen from Tables 1l and 2. The
maximum (sﬁe) contribution occurs for the same 8 parameter
value, that is, zaawzdkﬁ2.9.

Instead of carrying out a complete variation calecu-
lation wherein the coefficlents of all terms are allowed to
vary, we can consider the best (ss) plus (sdo) expansion as
a single state and vary only the coefficients of the added
terms., Values in Table 3 followed by the letter "x" were
determined by just such an approximete procedure. As can
be seen from Table lj, the overall accuracy of this approxi-
mation is high. In addition, the reduction in the amount of
calculation is considerable.

Two final calculations were carried out. In the first
calculation a configuration interaction was set up using as
a basis a selected set of 38 axially symmetric configurations

shown from the data in Table 3 to be most effective in lowf



61

Table L. Comparison of energy values obtained using the
complete and approximate variational treat-
ments. Energy in atomic units,

Energy using 15 (ss) and 5 (sdo) terms

z R zdR

8 20 terms® 6 termsP E®
240 2.0 -1.07606 -1,07590 ~0.,00016
2.6 2.6 -1,09889 -1.09833 -0,00056
249 2.9 ~-1.10830 -1,10717 -0,00213
3.5 3.5 -1.11660 ~1.11540 -0,00120
1.7 3.4 -1.11676 -1.11553 -0.00123
2.0 4.0 -1.12039 -1.11887 -0,00152
2,0 6.0 ~1,09487 -1.09393 -0,0009)
1.7 6.8 ~1.08191 -1,08133 ~0,00058

%182, 1828, . . ., 582, 183d,, 283d,, « « », 583d,.

bg(1,2), 1s3d, 283d_, « + ., 583d_, where #(1,2) is the
result of a calculation based on the 15(ss) terms of footnote
8,

°Bifferenme between the energy values for the 20 term and
the 6 term expansions,
ering the energy. In the second calculation, angular
dependence was introduced into the wave function in the form
of 6 (plp_l) configuration. The results of these two calcu~
lations are tabulated in Table 5.

As can be seen from Table 3, the maximum contributions
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Table 5, Final approximation to the energy and wave
function of the hydrogen molecule.

Energy

Energ Terms contrl-

Terms and parameters (aeue added ?utio?
a‘u.

15(88); 2 R=2.9 -1,04459
' , (ado) =-0.07791
15(ss), lS(sda); 2 R=z4R=2.9. -1,12250
15(ss), 15(ﬂdo)n gtﬂgo)i
z R=z,R=2,9, zgaa8.7. -1,13286 °

11(ss), 12(sdg), 6(sg ), 3(si )3

zgR=z4R=2.9, zgRﬂS.?, z4R=11.6. -1.13485
11(sa), 12(sd.), 6(sg ), 3(si ),

6(popo); zsﬁazdR&szﬂa.Q, zgR=

847, 2z3R=1ll.6. Coefficients

in Table 6. ~1,15086
11(ss), 12(sd,), 6(sgy), 3(si,),

6(popy)s 6(p,p_ )3 2 R=z,R=

sz32.9, zgR=8.7. 213311.6.
Coefficients in Table 7. «l.16141

(810) -0,00199

(popo) =0,01601

(p,p_;) ~0+01055

Experimental energy. =1.1740

to the energy for the variocus types of configurations
arreanged in order of importance, are: =0,01598 (popo),

-0,01036 (sg,), =0.00210 (si,), =0.00059 (sl,), =0.00027
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(dodo)’ -0,00023 (ano), and -0,00011 (pofo). The last four
types of states angtribute a negligible amount to the energy
and may be neglected. The configurations used for the 38~
term function were obtained aé follows: the best expansion
in 15 (ss), 15 (8d,), and 9 (sgo) was reduced to a 29-term
expansion with a ecmpletely negligible effect on the energy,
by dropping those configurations enterling with very small
coefficients. To this 29-term expansion were added first 3
(si) configurations and then 6 (popc) configurations. The
resulting 38-term function, which represents the best
function without angular dependence obtained in this investi-
gation, gave an energy of -1.15086 a.,u., which is 98,0 of
the total energy and 86,7 per cent of the binding energy.
The coefficients for this 38-term function are given in
Table 6.

This 38«term expansion was then considered as a single
state and the 6 (plp~1) configurations added, The energy
obtained was ~1,16141 a.u., which differs from the experi-
mental value by only 0,0126 a,u. Coefficients for this L)~

term function are given in Table 7.

Ce Discussion

In Table 8 we have listed some of the more important
investigations of the hydrogen molecule, with a brief

description and reference for each, along with the results



6l

Table 6. Expansion coefficients for 38-term fungtion using

axially symmetric configurations only.

Configuration Coefficient Configuration Coefficient

1sls 0.660071 Lsla ~0.004779
1s2s -0,622753 ls5d 0.027305
2828 0.2447810 2854, ~0,020325
ls3s 0.225707 385d° 0.006567
283s -0.098062 185g 0.020912
lsls =0 .099040 23530 -0,0114208
288 0.051885 BsSgo 04004793
3shs -0.005623 1s6g, -0.001511
1s5s 0,037061 ls7g ~0,003092
2858 ~04021802 2s7g 0.0024447
3858 0,006392 2p_2p,, ~0,093577
1s3d, 0.13315) 2p 3p, 0.031403
2s3d ~0,08,880 3p,3p, -0.015316
3834, 0.029565 2p lip 0.005632
L4s3d, -0,013409 3p bp, 0,002098
5e3d, 0,005040 hp lp,, -0.003245
lshd 0.034217 1871, 0.006366
2sd -0,027065 2874, 0,00};38
3sld 0,013578 3871 0.001610

83ee Table 5 for parameter values,
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Table 7. Expansion coefficlents for Lli-term function with
angular dependence.®

Configuration Coefficient
b
g(1,2) 0.997723
2p,2p_, 0.061552
2p13p_1 -0.023301
3py3p_4 0.014052
3pybp_q ~0.002494
bpibp_, 0.003056

83ee Table 5 for parameter values,

bgf(1,2) equals the 38~-term function given in Table 6,

for our 38-term axially symmetric function and our lli~term
function with anguler dependence. As can be seen, the
energy result for the Ll-term function is better than all
previous result s on hydrogen, except that of James and
Coolidge (39)s These latter workers, of course, have
obtalined essentially gomplete agreement with experiment,
vuaing 2 convergent expansion in elliptiecal coordinates and
the interelectronic distance ryoe James and Coolidge also
investigated the case in which ryp was omitted from the

wave function. They found that in this case it was not
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Table 8, A number of investigations on the wave function
and total energy of the hydrogen molecule.

Experimental

~le17h

Deseription Energy  Refer-
(aeu. ence

Coulson (one config. MO=LCAOQ) -1.1275 Uk
Coulson (one config. SCPF) -l.134 45
Heitler-London-Sugiura a(l)b(2) + a(2)b(1) -1.118 46,47
Wang (H-L, scale ractor)( -1.139 48
Rosen (H-L, scale factor, polarization) -1,1485 49
Welnbaum (H~L, plus ioniec, scale factor,

polarization) -1,151 50
Gurnee-Magee (H-L, scale factor, polarization

using off-center orbitals) «l.152 43
Inul (scale factor, polarization) -1.148 51
Mueller and Eyring (scale factor,

polarization; semilocalized) -l.154 52
Callen (variational MO--two config.) -1,1516 53
Wallis and Hulburt (diatomiec MO--two config.) =1.1354 54
Callen (variational MO--two config.) -1.1571 &3
James and Coollidge (without ”12’ ~1.1577 39
Hegstrom (one-center, 38-term function, ne

angular dependence) =-1.1509
Hirschfelder and Linnett (H-L plus ionie,

scale factor, angulsr correlation) -l.,156 41
‘James and Coolidge (with ”12) -1.1735 39
Hagstrom (one-center, lli-term function,

angular correlation) ~l.161
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possible to obtain an energy better than -1.1577 a.u. The
difference between this velue and experiment, «0,0163 a.u.,
is the angular correlation energy. Angular correlation has
to do with the correlation in the spatiasl positions of the
~elsctrons on opposite sides of a plane passing through the
bond axis. The use of the rj, coordinate is a direct way
of bringing angular correlatlion into the wave function. As
has been shown by Green et al. (40), however, configurations
with angular dép@ndence serve exactly the same function as
the ryp, terms. Prom Table 5 we see that the energy contri-
bution of the angular terms (pjp.;) 1s -0.01055 a.u. or
6.7 per cent of the total angular correlation energy.

The only other calculation listed in Table £ which
involves angular dependence in the wave function and which
may properly be compared with our result using the hli-term
function is that of Hirschfeldsr and Linnett (41). These
workers used a wave function of the Heitler-London plus
ionic form and in addition included 2p,, 2py’ and sz
orbitals on each of the hydrogen nuclei. Our best result,
however, 18 considerably better than the Hirschf:-lder and
Linnett result.

On the other hand, the calculated energy for the 38-term
axially symmetric function 1s inferior to the energy results
for several of the caleculatlons listed in Table &, in par-

ticular, the caleulations of Weinbaum (50), Gurnee and
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Magee (143), Mueller and Eyring (52), Callen (53) (two and three
configuration cases), and James and Coolidge without ry, (39).
All of these calculations are based only on axially symmetric
wave functions and involve no angular correlation. The error
in our 3B8-term function is given as the difference between the
James and Coolidge without ri, value and our value, that is,
~1,1577 - (~1.1509) = «0,0068 a.u., or 0.250 electron volts.
This amaunt of energy must then reside in axlally sym-
metric terms whlch have not been taken into account in our
3t-term wave funetion. It will be recalled, however, that
in constructing this function we were careful to include
all terms contributing to the energy in the third decimal
place and also included many terms contributing only in the
fourth deeimal place. Individually, the terms neglected are
not expected to be important; collectively, however, theip
effect may be considerable. We can estimate the effect of
the terms omitted as follows: Of the various types of
configurations in Table 3, only (slo), (sng), (d,d,), and
(pofo) Were not taken into aceount. These contribute a
maximum of -0.00059, -0,00023, -0.,00027, and -0.00011,
respectively, end if we consider these effects to be sddi-
tive we can eatimate ths maximum improvement to be geined
by including these functions as -0,00120 a,u., which leads
to an estimated energy of -1.1523 a.u. for axially symmetric

terms only. Terms such as (fcfo), (gego), etc., which were
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not investigated here, are expected to contribute at most
one or two in the fourth decimal place. Further minor con-
tributions, of course, will come from including more (as)
and (sd,) configurations.

On the basis of the above, and on other considerations,
we have estimested that with an expansion of 50 axially sym-
metric configurations and with & more judiclous choice of
the scale factors the best energy obtainable would be about
-1,1540 a.u., which means an error of about 0.1 electron
volt. The work required to achleve such an accuracy would,
however, be considerable.

There is good reason to believe that almost all of the
remaining angular correlation could be accounted for by

inclusion of angular terms such as (djd_;) and (dyd_,).

2
Convergence problems such as those affecting the axially
symmetric part of the wave function are not expected to
be important here. It 18 interesting to note that the
angular correlation in hydrogen is almost two~thirds of
the angular correlation in the helium atom, which is
-0.,0247h a.,u. according to Lowdin and Shull (23).

The slow convergence which characterizes our one-
center expanslions ls atitributable eassentially to the fact
that it 1s extremely difficult to represent the wave

funetion accurately in the immediate region of the nuclel

Wl th only a limited number of terms in the expansion. The
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actual wave function is "peaked" at the nucleus, while

the one~center wave function is rounded there. One may
attempt to argue that this 1s not too great an objection
since, as has been shown by Eckart (42), if the energy
error is small, the error in the wave function itself will
be of the order of the square root of the error in the
energy. One may further attempt to argue that the portion
of configuration space arouﬁd the nuclel 1s such & small
part of the whole that the error must be negligible, A
direct estimate of thls effect may be found from the work
of Gurnee and Magee (413). These investigators used a

wave function of the Heltler~London type, but offset the
orbital centers a distance x from the nuclei., Thus, they

wrote the wave function (not normalized);
Plriary) = 1s (1)1 (2) + s (2)1sy (1), (3.53)

where laé represents & ls atomic orbital, not at the
nucleus &, but displaced a distance x away from nucleus

& toward nucleus b, When the energy was minimlzed with
respect to both the scale factor and the distance, a total
energy of =1l.152 a.u. was obtained for an internuclear
distance of l.45 a.u. These offscenter orbitals, of course,
do not "fit" the wave function at the nucleus. Hence, the

energy value provided by this calculation represents a lower
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limit to the maximum energy attainable using wave functions
which do not "fit" at the nucleus. Although the Gurnee-
Magee result is remarkaebly good considering the simple nature
of the wave function, the energy error for this function 1s
by no means negligible, We notice that our estimated result
for just the axlislly symmetric terms 1s slightly better than
the Gurnee~Magee result, ‘

Throughout our calculation the internuclear distance was
held fixed at 1.4 a.u., It is easy to show that a small change
in this distance will not affect the energy appreciably
and will in general not account for the observed energy
discrepancy. Consider the following quallitative argument,

In the region of the equilibrium internuclear distance

the potential energy curve is given by E=kkx2, where x is
the displacement from the equilibrium positlion and k-hmzmve
is the force constant for the vibration of a pabticle of
mass m with a frequency of v. If we assume that the one~-
centser method is capable of giving the vibrational fre-
quency of hydrogen (4395 em”l) to within 30 per cent either
way of its actual value, then, for a displascement of x=

0.2 asu., for v=5500 cm"l 1

» E=0,0029, while for v=3000 cm R
E=0,0008, Hence we see that even a displacement of 0,2
a.u. would account for at most only fifty per cent of the
observed energy discrepancy.

Once we fully realized that an adequate representation
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of the axially symmetric part of our one-center functlon
could not be made in terms of (ss), (sde), (ago). and
(p@po) terms only, we declded to invesatigate the convergence
properties of expansions of known wave functions for H2 in
terms of our one-center orbitals. In this way we hoped
to gain some idea of the overall rate of convergence of a
one-center expension as well as determine the importance
to the final energy of terms occurring in the wave function
with only very emall coefficlents,

The function expanded was the Gurnee and Magee function
(3.53)s Five s, four p_, four d_, one fo’ and one g,
Laguerre function were used, for which the parameters wepre

ZgR=z R=z R=2,0, z;R=4.0, and zgﬂw&.o. In order to expand

P
{3.53) we first expanded a single ls; orbital with the scale
factor z=1,185 and located a distance 0.69 a.u. along the
bond axls from the expansion center. The internuclear
distance was taken as 1l.40 a.u. With these values of the
parameters, (3.53) gives an energy of ~1.151 a.u. according
to the data of Gurnee and Magee. The expansion is straight-

forward. Thus,

' 2
ls, = 2 8(nq)
a n,q a ﬁnqo

- n«-q-l‘ 1
s(na) = f1s} ¢qu dv = 159 ¢, (nq) flsa xzqo dv  (3.54)
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where we have expressed ¢§q0 in terms of the normalized Slater
functiaﬁslusing equation (3.11).:'Th£ overlap integrals

S{ng) were evaluated in elliptiecal coordinates in the usual
waye. This eipbéasimn for la; and & corresponding expression
for laé, but with the signs of the Py and fo terms reversed,
was then inserted in (3.53) to give the final one-center ex-
pansion. In this expansion only the most»important terms
were retained. In the form finally adopted, the overlap with
(3.53) was 0.9989. The calculated energies for this ex-
pansion at varlous stages of truncation were: 15(ss),
-1,0325 (-1.043¢), 15(ss)+15(sd ), -1.1108 (-1.1206),
l5(ss)+15(ado)*6(popo), -1.,1270 (=-1.1361), and 15(ss)+
15(5d0)+6(p0p0)$5(agc), -1.1370 (=1.1462). The quantities

in parenthésss are the energles obtained in a one-center
configuration interaction caleculation using ths same number
and kinds of configurations, and also the same parameters.
Although the expansion of (3.53) i1s complete to within 0.1
per cent as measured by the overlap, the computed energy is
in error by l.2 per cent.

The difficulty can be seen from Figure 1, where we
compare the values along the bond axis of the floating MO
N(lsé«!—lsé) with 1ts one-center expansion Y. A floating MO
is here a molecular orbital of the LCAC type but with
the atomic orbitals allowed to "float" &l ong the bond axis.

With such an orbital Hurley (55) recently obtained essentially



Figure 1.

One~-center expsnsion of floating MO functicn
for H2
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the SCF energy for H The overlap of W with the floating

5°
MO 1s 0,99982.
Following Shull and Ldwdin (56,23) we have also derived
the approximate natural spin orbitals for the 30~-term
function of Table 6. These authors have shown that the

total space function
‘Piryry) =2 c (4.4) (3.55)

for a singlet state of a two electron system 1s equivalent
to & guadratic form having a certaln rank r and signature
8 and that this quadratic form can be reduced to the dia-~

gonal form
‘i) = 2, e (XX (3.56)

by a suitable nonsingulsr linear transformation., The rank
of the guadratic form 18 defined as the rank of the deter-

minant of 1ts coefficlents, det(C The X's, which are

) *
given as linear combinations of the ﬁ;*s, are the so-called
"natural spin orbitals" which diagonalize the first-order
density matrix. The "natural expansion"™ (3.56) was shown
to have certain properties of maximum convergency. First,
the natural expansion is characteriged by having the most

rapld convergence of all superpositions of configurations
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deseribing the same wave function. Second, if the natural
expansion is interrupted after r terms, and then renormal-
ized, the resulting function represents the best approxi-
mation of rank r, i.e., the funection of rank r having the
smallest quadratic deviation from 1}P(r1,r2) (this 18 so
whether the expansion (3.55) 1s exact or only approximate),
Numbering the natural orbitals X, in order of decreasing
values of ey’ the "best" wave function of rank r then has

the form

' ryry) = Z o RINE oD (3.57)
where ci may be interpreted as the "occupation number"
n, of the natural orbitals'xk. Here "best" must be inter-
preted as best in the sense of maximum overlap, not in the
sense of energy values obtained. It was further shown that
the first natural orbita&.xliahmuld approximaté very closely
the 3CF funection, although the two functlons cannot be
ldentical since they are obtained by linear and nonlinear
processes, respectively. Calculations on He (23) indicate
a close correspondence between the two functions, however,
In Table 9 we have listed the occupation numbers and
the natural orbitals Xk (k=1, ¢« « «5 5) for the 38-term
expansion of Table 6. The method of construeting the

natural orbitals is discussed in reference (23) and will
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Table 9. g:ﬁgiaé.spin orbitals for 38-term expansion in
Orbital Coefficient Coefficient Coefficient
1s 0,821,278 0.1 7125 ~0.1%8650
2s -0.518421 0517750 0.043830
3s 0.172041 -0,672546 0.008142
Lis -0.079177 0.202931 -0,0744808
5s 0.030995 -0.026390 0405079l
34 0.113986 06036505 0918838
ld 0.032010 0.090161 0.243081
5d 04024336 0.022130 04206037
5g 0.018108 04006968 0.155387
6g -0,000887 0,008348 -0,0092440
(3 -0,002718 0.002411 -0,023958
74 0.005573 0.003972 0.047480
4 04992944k -0,061083 -0.01499Y
n 0.985938 0.003731 0.000225

X, Xs
2p 0.966503 0.229370
3p ~0,254111 0.918208
Lp ~0,036045 ~0,322931
vn ~0,09956l -0.010291
n 0.009913 0,000106
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not be given here. Using (3.57), the energies for various
combinations of the natural orbitals were then computed.
The enmergy of X: was found to be -1.11625 a.u., that of
(JEIX§ - fﬁélg)/(nl+ng)%, -1.13201 a.u., that of (Vﬁixz -
V53X3) /(ny#nz)¥, -1.13416 a.u., that of (YRAE - /ES -
Vﬁé%%)/(nl+n2+n3)%, «1,14930 a.u. as compared with the exact
value -1.15086 a.,u.™ The rapid convergence of the natural
expansion is well 11lustrated by these results, particularly
by the last case where, with only three terms, we have ob-
tained essentially all of the energy. Inclusion of.lh and
Xg in the natural expsansion would secure virtually all of the
missing energy. The remaining natural orbitals enter with
such small occupation numbers as tc be of negligible impor-
tance as far as the energy is concerned.

The reduction in the over-all complexity of the 30-term
function provided by the natural orbitals is indeed striking.
The importance of the orbitals‘xl,‘xg, and 13 in lowering the

energy can be adequately rationalized in terms of electron

*In calculat ing these energies it was necessary to
neglect those states (such as d,d,, 4,84, etec.) wa ich were
also neglected in the original configuration interaction,
since the integrals arising from these states were not
availaeble and to have calculated them would have required a
prohibitive amount of additional lsbor. In any case, these
states are not expected to be lmportant and the errors incur-
red by neglecting them will be small, probably no more than
0.002 a.u. for X,€ and mueh less for the other expansions.
From & computational point of view, then, it appears that the
simplifications introduced by the natural orbitals are more
apparent than real. This point does not seem to have been
adequately emphasized in the literature to date.
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correlation effects. A detailed discussion of electron corre-
lation in the hydrogen molecule will not be attempted here,
however, since it is a rather involved subject and would,
moreover, be beside the point of the present discussion. But
see Callen (53) or Lennard-Jones (57) for discussions of the
relation between configuration interaction and electron cor-
relation as they apply to the hydrogen moleculs.

A comparison of Xl and the SCF function of Coulson dis-
closes the essential deficiency in our one-center function,
In Pigure 2 we have plotted the values al ong the molecular
exis of these two functions. The floating MC function of
Figure 1 is also included for compsrison sake. Although the
agreement between Xi and the SCF function 1s good at large
distances from the expansion center, in the region of the
nuclei the agreement is especlally poor. On the other hand,
when the vsl ues at points &l ong the perpendicular to the axis
at the origin were compsred, ths asgreement was found to be
excellent., We note also that the energy ofJX% (=1.116 8.u.)
is only a poor approximation to the SCF energy (-~1.134 a.u.).
This disparity batween.)i and the SCF function, which is con-
fined predominantly to the region around the nuclei, strongly
sigegests that a similar diserepancy exists between the 38-
term function and the true wave function since, if the one-
center expansion were only complets, Xl w uld approximate the
SCF function with & much greater accupracy than at present,

namely, to a8t least as high an accuracy as the floating MO
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Flgure 2. Comparison of X; with SCF and floating MO
functions for Hp
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function, which may be regarded as the first natural orbital
in the reduction of the Gurnee-Magee function (3.53) to
natural form.

That the observed error and sl ow convergence in the energy
can be accounted for on this basls can be seen directly from a
point by point comparison of our final one~center approximation
‘(the lli-term funetion Wi th coefficients in Table 7) with the
beat James and Coolidge wave function (the 13-term function
given in the last column of Table II in reference (39)). Table
10 shows vsal ues of these two functions for various positions of
the electrons along the bond axis (measured from nucleus a
towards nucleus b). Since the estimated accuraey of the James
and Coolidge function 1s about three per cent, the discrep-

ancies between the two functions are a rough indication of the

‘Table 10, Comparison of the best James and Coolldge function
with the final llj-term one~center function.

Lia Py Cne-center James and Coolidge
0.6 0.8 0.1382 0.1131
0.5 0.9k 0.1925 0.1248
0.4 1.0 0.2194 0.1403
0.3 1.1 0.2300 0.1600
0.2 1.2 0.2096 0.1£39
0.1 1.3 0.1754 0.2122

0.0 1.l 0.1625 0,2452
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errors in our one-center function. As in the case of the first
natural spin orbital, the one-center function 1s much too con-
tracted, having maxims along the axis at a dlstance J0.4 a.u. on
either side of the orligin instead of at the nuclei. A compari-
son at points other than those on the axis indicates a close
correspondence between the two functions everywhere except in
the region around and between the nuclei.

Evidently, then, central field functions centered at a
single point in the molecule, and Iin particular the Laguerre
functions used in this investigation, do not form a suitable
basis for accurately representing the hydrogen molecule wave
function throughout all regions of the molecule, particularly
in the region of the nuclei. That one-center functions can
describe the over-all symmetry of the wave function rather
well 1s shown by the rapid initlal convergence. The slow
subsequent convergence then simply reflects the failure of
the one-center orbitals to fit the detailed form of the wave
function, and it 1s apparently just these details of the wave
function which are of importance in securing ultimate conver-
gence in the energy.

It also seems very unlikely that the use of any other set
of one-center orbitals, such as the overcomplete set of Slater
functions, would secure more rapid and complete convergence in
the energy.

We conclude, then, that the one-center method is not a

convergent procedure for calculating the total energy of the
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ground state of the hydrogen wolecule. Although we have ob-
tained an energy value for the hydrogen molecule vhich is
second in accuracy only to that of the convergent James and
Coolidge calculation, the error 1n the energy is still 0.013
8.u., and this is an error which is about one order of magni-
tude grester than that which can reasonably be tolerated for
such a simple system, We further expect that the one-center
method will be still less convergent when applied to other
more complicated and lsss tightly bound hydrogenic systems.
This point will now be consldered more fully, using Hg as an

example.
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1V. ORE-CENTER CALCULATION FOR THE H; MOLECULE IONW
A. Introduction

The triatomic hydrogen molscule ion, B;’ is known to
be a very stable system (when left to itself) and 1s formed
in rsther large guentities whenever hydrogen gas is ionized
(58,59). Experimentally very little is known about this
system. There is reason to bslieve, however, that the

primary process responsible for the formation of H; is

H, + ﬁ; - E; + H. (L4ol)
Experiments tell us no more as to the energy, spectrum, or
chemistry of ﬁg.

The first calculations for this system were made some
time ago by Coulson (60) and by Massey (61l). Later,
Hirschfelder, Eyring, and Rosen (10) applied the valence
bond method to the symmetrical linear configuration. Using
ls hydrogen~like atomlie orbitals, with sereening included,
these suthors carried out a complete Heltler-London-plus-
ionie-terms variational calculation. All integrals were
evaluated exactly. The energy values cbtained for the
various stages in the calculation are given in Table 1ll.
Recent attempts (62) to improve this caleculation by intro=-

ducing off-center Gurnee-Magee orbitals resulted in only
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Table ll. Some previous investigations of the wave function
and binding energy of H§

Binding Refer-

Description of wave function ?nerg* ence
Balls

Symmetrical linear. R=rg.=ry.

H-L, R=2.0 0.146 10
H-L, screening, R=1.55 0.2086 10
H-L, plus ionic, R=Z.0 0.1731 10
H-L plus ionic, screening, R=1.53 0.2477 10
H-L plus lonic, Gurnee and Magee

orbitals, sereening, R=1,60 0.2528 b2
MO, one configuration, screening, R=l.52 0,2180 67
Handler, one-center, R=1l.55 0.163 2

Hagstrom, one-center, 8s, sdo, 884>
and pyp, configurations, R=1.50 0.230

Ungymmetrical linear

A-L plus ionic, screening, rg,=1.55,

rpe=l.89 0.2406 63
H-L plus ionic, screening, rp,,=L.l5,

rpe®l.92 0.2069 63

Equilateral triangle

H-L, screening, R=1.82 0.2£58 1l
M0, one configuration, sereening, R=1,{2 0.2623 11
M0, two configurations, screening, R=l.%2.

Equivalent to H-L plus ionic 0.2929 11
Handler, one-center, R=1l.56 U.20L 2

Hagstrom, one-center, (ss) only, R=1l,6 0,170
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negligible improvement, while calculations (63,64) on the
unsymmetrical linear configurations indicated that the
potential curve for linear H; has a minimum for the symmet-
rical configuration.

Calculations have also been carried out by Hirschfelder
(11,65) for the ground and excited states of two non-linear
configurations of H;, namely, the equilateral triangle con-
figuration and a right triangular form. In this case it
was necessary to resort to a differential analyzer to eval~-
uate the three-center integrals., Only ls functions were
considered. The equilateral triangle configuration was
found to be stable by =0.293 a.u. or 18l keal with respect
to dissociatlon into hydrogen atoms and & proton. Hence
we see that the process (lj.1) 18 certainly exothermic by
more than 1l keal (the values for the binding energies of
H, and Hz are 108.6 kocal and 6li,0 keal respectively) and,
allowing for the gustomary errors in the valence bond
treatment, was estimated by Hirschfelder to be exothermic
by as much as 38 keal.

A comparison of the results for the right triangle
and equilateral triangle canfigurations‘led Hirschfelder to
conelude that the equilibrium configuration must lie some-
where in between. Since 1t was necessary to approximate
some of the three-center integrals, the angle could not be
reliably determined more closely than this. This result

probably should not be taken too seriously, however,
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Pearson (66) end recently Walsh, Moore, and Matsen (67)
have applied the molecular orbital method to the symmetrical
linear configuration of H;. In general, the results are
supsrior to the simple Heitler-London approximation, but
inferior to the Heitler~London-plus-~ionic-terms treatment.

As has already been pointed out, Handler (2) used the
one-center method to calculate the ground state energles
for symmetrical linear and equilateral triangular HY. The

3
results obtained are given in Table 1ll.

Be The Varistional Problem

One=-center ealculations were carried out on both the
symmetrical linear and equilateral triangular forms of Hg.
Except for minor details, calculations proceed much like

those for HZ' The Hamiltonlan for H; is

2 2
H %Vl - %Vz - l/ral - l/rbl - l/rcl
- -1 - .
1/'raa /}bz 1/'r°2 + 1/'1*12 (he2)

where a, b, and ¢ denote the three hydrogen nuclei. For
linear symmetrical H;, the polar axis was located along the
bond axls with the central nucleus at the center of coordi-
nates. For the equilateral triangular case, the plane of

the molecule was perpendicular to the polar axis, with the
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center of symmetry of the molecule at the center of coordi-
nates, _

Linear symmetrical H; belongs to Qﬂh. The ground state
wave function was assumed to have the symmetry 12[;. Hence,
the same kinds of configurations used for H_ can also be

2
&+
used for H,. Moreover, the relative lmportance of the

various teims is expected to be approximately the same, since
exactly the same kinds of electron correlation effects enter.
However, the higher spherical harmoniecs (i.e., 88 aio, etc.)
are expected Yo be more important since in this case the
distances of the nuclel from the expansion center are con-
aiderahly greater than for HZ.
Equilateral triangular E; hes the symmetry D

Symmetry adapted wave functions are easily conatri:ted by
group theoretic methods. We shall not discuss these methods
here, however, since for this ocase we have carried out the
configuration interaction only in the spherically averaged
approximation, that is, with (ass) terms only.

The energy matrix elements are given by equations

(3.22) and {3.23) except that H, is now given by:
: + i - 2 - - d
For linear B Kl = - 3V N 2/:;*'la 1/r N

+ 2
F 5 ™ -y - ] - -
or triangular Hy, H = %§7l l/l?1a l/}lb 1/r1°. (Le3)
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These changes necessitated only a slight modificatlon In the
matrix element compiling routine.

The only new integrals required for the calculatlions on
'g were the nuclear attraction integrsls. The electron re-
pulsion integrals used were already avallable from the Hs

calculations.
¢, Hesults and Discussion

In Table 12 we list in part the results of the calcula-

tions for linear symmetrical H;.

Both the internuclear

+
Table 12, One-center expansion of linear symmetrical Hi,
Parsmeter values: zg=zp=2g4=zg=2.086666.

Internuclear distances: Racz bc”l‘s R.U.

Deser .ption of Function Binding
(avnd)

10(ss) 0.07389

10(ss}, 9(sd,) 0.182€6

15(ss), 15(ed,) 0.1832h

10(ss), 9(sd,), 9(=g,) 0.2 929

10(ss), 9(sd ), 6(pyp,) 0.20243
10(s8), 9(sd,), 9(sgy), 6(p,py) 0.2308

a
Estimated val ue assuming additivity of (380) and
(poP,) contributions.



distances and scale factors were varied to minimize the
energy.

Calculations were carried out at internuclear distances
of 1.5, 1;525, and 1l.55 a.u, using 10 (ss), 9 (sdo), and 9
(sg@) configurations. The minimum in the energy was found
for sn internuclear distance close to 1.5 a,u. The data
given in Table 12 are for this distanee and for the cofre-
sponding best values of the varlious scale factors as deter-
mined by the configuration interaction. The optimum values
of these parameters were determined by the usual stepwise
procedure, that is, by minimlzing first with respect to Zg
for 10 (ss) states and then, wlth z_ held fixed at its
optimum value, adding 9 (sd,) states and minimizing the
snergy with respect to Zgo and éo on for 22ch new type of
state added,

The results of these calculations spesk pretty much for
themselves. We see that with only four types of states we
have ebtéinad a'binding energy of 0,230 a.u., which is better
than all previous results (Table 11) for this system except
those of Hirschfelder st al. (10) (0.2477 a.u.) using the
Heitler=-London method with ionic terms anddscreening included
and Barker et al, (62) (0.2528 a.u.) using the off-center
Gurnee~Magee orbitals. This latter calculation represents the
best approximation to date for this system. We note that the

one-center result of Handler using 3 (ss) and 3 (sdo) terms
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is only 0.163 a,u., while the be&t result obtained here for
terms of this type is 0.18286 a.u.

The convergence of the expansion 1s manifestly slower
then for Hy as can be seen from a comparison of the energy
contributions in Hp and H3+ for corresponding types of terms.
Thus in Hg the energy contributions due to (sdy,), (sg,), and
(pop,) states are seen to be -0.1095 a.u., -0.0260 a.u., and
-0,0196 a,u., respectively. The corresponding best values
for these states in Hp are -0.0779 a.u., -0,0104 a.u., and
-0.0160 a.,u.,, respectively. This implies that more configura-
tions will be required to obtain a good energy for H; than
are correspondingly reaquired for HZ' This slow convergence
is due essentially to the fact that in H; the charge distribu-
tion is mueh more elongated than in H, so that in expanding
the wave function the axially symmetric terms, especially
those involving the higher spherical harmonics (e.g., 8o
igs 1ps etc.), assume a correspondingly more important role,
that 1s, enter into the wave function with larger coeffi-
cients which in turn implies a greater contribution to the
final energy.

These results indicate the necessity of including such
states as (si,), (sly), etc., as well as the angle~-dependent
terms (plp,l), (dld~l)’ etc. We can easily estimate what can
be geined in this way, reasoning by analogy from the contribu-

tions found for terms of these types in H2 and assuming any-

where from 8 two to 8 four times inerease in importance for
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the axially symmetric terms., On the other hand, terms with
angulaf dependence such &s (plp~l) are expected to be less
important in H; than in H,. This follows from the fact that
the total angular correlation energy steadlly decreases as
one goes from Eé,to Hy to H; (and, in fact, for H; & ould
approach zero as Rac = R,, epproaches infinity). Thus, we
estimate the total energy to be gained from adding (plp-l)’
(d1d_,), etc., terms at about -0.010 a.u., while the con-
tributions due to axially symmetric terms are variously
estimated at mbout -0.008 a.u. for (sl,) terms, about -0.002
a.u., for (slc) terms, and about -0.005 a.u. for miscellsneous
terms, Although these estimates are admittedly rather arbi-
trary, they are certainly not unreasonable, Adding these
estimates to the calculated binding energy of 0.230 a.u.;
and allowing for a spread of 0.005 a.,u. either way, leads to
an estimated binding energy of 0.255%0,005 a.u. It seems
safe to assume, then, that the Hirschfelder et al. (10) re-
sult (0.2477 a.u.) canAprabably be reached with axially
symmetric terms only and that inclusion of terms with angular
dependence as well will give a result as good as or slightly
better than the Barker et al. (62) result (0.252f a.u.).

Caleulations are presently in progress to check this
point, | |

The cealculations on the equilateral triéngle configura-
tion of Hg were carried out in the spherically averaged

approximation only (Table 13). Despite their rather
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Table 13. Binding energy of the equilateral trisngle con-
figuration of H3 using 6 (ss) configurations,
Energies in atomic units.

R 1.396 a,ue. R L.732 a.u. R 2,078 a.u.
Zg E Zg B Zg B
1.5 0,1518 1.k 0.155% 1.375 0.1112
1.875 041567 1,8 0.1571 1.667 0.1142
24375 0.1549 242 0.1590 2,083 0.1139
2.878 0.1172 2.6 0.11L7

incomplete form, the results are presented here because of
thelr promising nature. A simple interpolation of this data
indicates that the minimum in the energy occurs for an
internuclear separation of about 1.6 a.u., A single calcu-
lation at this distance using 15 (ss) configurations gave

a binding energy of 0.170 a.u. Thus, with (8s) terms alone
the system isbfound to be almost stable with respect to
dissocliation into a hydrogen molecule and a proton. Although
this binding energy 1s not as high as even the simple
Heitler~London without secreening result, it 1is promising

that considerable binding 1s obtained with these relatively
inapproprliate spherical orbitsls. It seems llikely that the
one center method will be highly successful for the triangular

configuration of H;.
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In eonclusion, these preliminary results for H; along
with the more detaliled results for HZ’ give encouragement
that for & very limited class of molecules the one-center
method will be a useful and successful procedure capsble of
giving results comparable in sccuracy to those obtained using
the conventional spproximation methods based on atomlc orbit-
als, On the other hand, the observed slow convergence and,
in the case of Hz, the behavior of the wave function clearly
indicates that highly accurate (convergent) calculations of
total energies are not at all feasible by this method.

The present calculations, of course, should be regarded
as only a rough indication of the realm of applicability of
the method. Further calculations on systems with three and
four selectrons, systems with low symmetry, and systems with
larger internuclear separatlions are needed before the conver~
gency properties of the one-center expansions can be claimed
to be completely understood. Nevertheless, it is suggested
that the following systems can be successfully handled by
this method: Hy, H,, H;, Hy, and possibly LiH, HeH', and
HeH. Extension to more complicated cases (e.g., HZO’ Hez,
etc.) involving inner shell electrons off the expansion cen-
ter and/or more than four electrons does not seem to te prac-

tical,
D. Other Possible Applications

Excited states can be attacked by the same general pro-
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cedures outlined above for the ground states. If the excited
state is the lowest state of its symmetry type, the calcula-
tion is straight forward and proceeds exactly as for the
ground state, only now the expansion terms must have the
symmetry of the excited state. If the excited state is

not the lowest of a given symmetry type, one makes use of
the fact that the second lowest root of the secular equation
is an upper limit for the energy of the second lowest state
of the given symmetry, and so on for the higher roots. Thus,
by minimizing the higher roots of the secular equation one
may hope to galin approximations to the energies, elgen-
functions, and potential surfaces for the exclted states,

Of course, this may demand the use of more terms than
are required for the ground state. In addition, the parame-
ters which minimize a particular higher root will in general
notbe the same as those that minimize the lower roots of the
secular equation so that the eigenfunction of the excited
state will not be orthogonal to the eigenfunctions for all
lower levels as, of course, it should be. This may not be
too bilg an objection, however, if one 1s interested only in
the energles.

Matsen (8) has carrled out single configuration one-
center celculations for several of the excited states of Hg
and has obtained surprisingly good results even for fairly
large internuclear separations. In a recent note, Dalgarno,

Moiseiwitsch, and Stewart (68) have summarized the main con-
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elusions of a series of investigations on H; and Hen'*
comparing the one-center (united-atom) approach with the
conventional LCAO ¥0 method. Generally speaking, it was
found that for excited states the united-atom approxima-
tion was remarkably accurate and usually superior to the
LOAO MO approximation even for R values as large as 5 a.u.,
while for the ground states the LCAO MO apprroximation was
superior. In view of these results it would appear that
the one-center method will be highly successful for ex-
clted states, indeed, probably much more so than for the
ground state.

Some preliminary work on excited l;i; states of Hg
has been done in the course of the present investigation.
The results, although generally quite encouraging, are
guite incomplete and will therefore not be elaborated on

further here.
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V. .SUMMARY

The use of the one-center method for the direct calcu-
lation of total enerpglies of simple molecules has been inves=-

tigated and application has been made to HE and H The re-

+
3.
sults obtained are comparable in accuracy to those obtained
with the conventional methods involving the use of atomic
orbitals and suggest that extensions to more complex cases

(such as H. or LiH) are probably possible and well within

the reach if computing machines now avallable. In the case
of H, the calculated energy is -1.161 a.,u. for R=l.4 a.u.
This is the second best result for this system to date.,
Generally speaking, the convergence of the one-center
expansion is slow. In view of thls slow convergence and from
a detailed examination of the calculated wave function in the
case of H2 it is concluded that highly accurate (convergent)
calculations are not feasible by this method. Moreover, as
shown by the ﬂg results, the convergence becomes slower as
the internuclear separatlons become larger. The varlious fac-
tors affecting the convergence have been considered in detail.
A one-center calculation on HZ previously advanced by
Huzinaga as support for the one-center approach has been shown
to be In error.
The programs constructed for the 1BM 650 computer for
carrying out the various computational processes in the onse=-

center calculations have been briefly described.



1.
2.

10,

11,
12.

13.

L.

15.
16.

17.

S,

GVVQ

T.
H.

L.

R.

P,

95

Vi. REFERENCES

Huzinaga, Progr. Theor, Phys. 15, 501 (1956).

8. Handler, Ph. D. Thesis, ''niversity of Chicago
Library, 1955,

€. Chen, J. Chem. Phys. 23, 2200 (1955).

Shull and P. O, L&wdin, Svensk. Kem. Tidskrift.
67, 370 (1955).

C. Allen and R. K. Nesbet, Quarterly Progress
Report, Solid-State and Yolecular Theory Group,
Me To Te, July 15, 1956, p. 29.

. Nesbet, Quarterly Progress Report, Solid-
State and Molecular Theory Group, M. I. T., April
15, 1956, p. 12.

M, Morse and E. C, G, Stueckelberg, Phys. Rev.

A. Matsen, J. Chems Phys. 21, 928 (1953).

Trans. Roy. Soc. A245, 215 (1953).

¢. Hirschfelder, H. Eyring, and N. Rosen, J.
Chem. Phys. i, 130 (1936).

0. Hirschfelder, J. Chem. Phys. 6, 795 (1938).

. A. Bueckingham, H. S. W. Massey, and S. R. Tibbs,

Proc. Roy. 8oc. (London) Al78, 119 (1941).

E. Banyard and N. H. Much, Acta Cryst. 9, 305
(1956).

J. M, Zernal, Proc. Phys. Soc. (London) A66, 51k
(1953).

Carter, Proc. Roy. Soc. (London) A235, 321 (195%6).

“. Nesbet, Proc. Roy. Soc. (London) A230, 312
(1955).

C. J. Roothaan, Revs. MNod. Phys. 23, 69 (1951).



22,
23.
21‘..

27
28,
29.
30,

31,

33.

3.

35.
36.

S
P
H.

e
P.

Jde.

P,
R.
S,
S.

H.

Bie

P,

P

5.

96

7+ Condon and G. H. Shortley, The Theory of Atomic
Spectra, Cambridge University Press (London), 1953.

¥. Boys, Proc. Roy. Soc. (London) A21l7, 235 (1953).
C. L&wdin, Phys. Rev. 97, lhih (1955).

Shull and P. O. L&wdin, J. Chem. rhys. 23, 1362
(1955).

A, Hyllerass, Z. Physik 48, 469 (19z2¢).

0. Lowdin and H, Shull, Phys. Rev. 101, 1730 (1955)
C. Slater, Quarterly Progress Report, Solid~State and
tolecular Theory Group, M. I. T., April 15, 1956,

Pe l.

Holgien, Phys. Rev. 104, 1301 (1956).

C. Chen and H. Sponer, Texas J. Sci. 8, 2, 179
(1956).

0s Lowdin, Advances in Phys. 5, 1 (Jan., 1956).

G. Parr and H. W. Joy, J. Chem. Phys. 26, Lzl (1957),
F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950).
¥. Boys, Nature 178, 1207 (1956).

Shull and 8. Hagstrom, Texas J. Sci. 8, 2, 190
(1956).

C. Xemble, The Fundamental Principles of Quantum
Mechanics, McOraw-Hill BOOK (O, iNCe, NOW JOrK,
1937, p. 565,

M. Yorse and H. Feshback, Methods of Theoretical
Ph ales, MeGraw-Hill Book fo., inc., New Yorz, 1953,

N. Sneddon, Special functlons of Mathematical
Physics and Chemistry, interscience Publishers, Inc.,
New Yors, 19556, p. LicZ.

0. L&wdin, Phys. Rev. 97, 1509 (1955).

F. Boys, Proc. Roy. Soc. (London) A201, 125 (1950).



37.

38,

39.

1O.

1.

h2.
43.

Iyly .
L5,
46,
b7,
4e.
49.
50.
51.
52.

53.
5h.

55.

56.

de

E.

H,

Lio

Ce
B,

C.
C.
We

Y.

N.
Se
T.
Ce

B
R,

A,

97

A, Gaunt, Trans. Roy. Soc. (London) A228, 151
(1929).

B, Wilson, J. C. Decius, and P. C. Cross, Molecular
Vibrations, McGraw-Hill Book Co., Inc., New York,
1955, p. 226.

M. James and A. S, Coolidge, J. Chem. Phys. 1, ©25
(1933).

C. Green, M, M. Mulder, P. C. Milner, M. N. Lewis,
J. W. Woll, B, K. Kolchin, and D. #ace, Phys. Rev.
96, 319 (1954).

0. Hirschfelder and J. Ww. Linnett, J. Chem. Phys.
18, 130 (1950).

kckart, Phys. Rev. 30, 891 (1930).

F, Gurnee and J. L. Magee, J. Chem, Phys. 18, 142
(1950).

A. Coulson, Trans. Faraday Soc. 33, 2, 1479 (1937).
A. Coulson, Proc. Cam. Phil. Soc. 34, 204 (1938),
Heltler and F. London, Z. Physik Ul, LS55 (1927).
Sugiura, Z. Physik 45, 484 (1927).

. C. Wang, Phys. Rev. 31, 579 (1928).

Rosen, Phys. Rev. 38, 2099 (1931).
Weinbaum, J. Chem. Phys. 1, 593 (1933).
Inui, Proc. Phys.-Math. Soc. Japan. 20, 770 (1938).

R. Mueller and H. Hyring, J. Chem. Phys. 19, 1455
(1951).

Callen, J. Chem., Phys. 23, 360 (1955).

wWallis and H., M., Hulburt, J. Chem. Phys. 22, 7k
(1954).

C. Hurley, Proc. Roy. Soc. (London) A226, 179
(1954 .

Shull end P. C. LOowdin, J. Chem. Phys. 23, 1555
(1955).



57.
56.
59.
60.
61.
62.

63.

6ly.

65.

66.
67

68.

-
73.

A,

E.

e

o8

E. Lennard-Jones, J. Chem. Phys. 20, 102 (1952).
D. Smyth, Rev. Mod. Phys. 3, 347 (1931).

D. Smyth, Phys. Rev. i, 452 (1925).

A. Coulson, Proc. Cam. Phil, Soc. 31, 24ly (1935).
S, W, Massey, Proc. Cam. Phil. 3occ. 27, 541 (1931).

S« Barker, J. C. q;ddings, and H. Eyring, J. Chem.
Phys. 23, 344 (1955).

0. Hirschfelder, H. Diamond, H. Eyring, J. Chem.
Phys. 5, 695 (1937).

Stevenson and J. C. Hirschfelder, J. Chem. Phys,

5, 933 (1937).

C. Hirschfelder and C. N. Weygandt, J. Chem. Phys.
6, 806 (1938&).
G. Pearson, J. Chem. Phys. 16, 502 (194¢),

M., Walsh, R. A. Moore, and F. A, Matsen, J. Chem,
Phys. i@; 1070 (1950).

Dalgarno, B. L. Molseiwitsch, and A, L, Stewart,
J. Chem. Phys. 26, 965 (1957).

SchrBdinger, Ann., Physik 80, LE3 (1926).

hotani, A, Amemiza, and T. Sinose, Proc. Phys.-Math.
Soc. Japan 20, Extra No. 1 (1938); Extra KNo. 2 (1940).

. Perron, Die Lehre von den “ettenbriichen, Thelsea

Publishing Co., New Yorx, 1950, pp. 3ie, 34¢.
C. Chen, J. Chen. Phya. 2lj, 1268 (1956).
J. Corbato, J. Chem. Phys. 24, L52 (1956).



99

VII. ACKNCWLEDGEMZNTS

The author wishes to acknowledge his gratitude to Dr.
Harrison Shull for his patient guidance and encouragement
during the author's course of graduate study.

Thanks are also due to Dr. Robert S. Hansen for en-
couragement and advice given during the preparation of this

thesis.



100

VIII. APPENDICES
A. The Associated Laguerre Polynomials

' n
. The assoclated Laguerre polynomial Lk(x) is defined

by means of the generating functlion

n o~xb/(lot) n Kk

{(~1) 2 .n t
t = L 8.1)
& B B ‘

( 1-t )n“'l

or through the Laguerre polynomials Lk(x)

n n . S
L) = £ 10 = Sg(e® Sple %)), (8.2)

An explicit series expansion for Lz(x) is

2
= (~1)%ua) karenal s N
Lk(x) ) lFl( k+n3n+l;x), k>n
-1)Pgy Kon Kl (k-
o (1) Tk 1(k-n)!t (o) (8.3)

(k=n)! {zp (k-n-1)1(n+i)lil

where lFl(m;n;x) is the confluent hypergeometric function
(see Sneddon (34, p. 32) for notation and definitions).

This serles expansion 1s probably the most convenient way

of obtaining the higher order functions. The polynomial
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.3:.
ySLg(x) satisfles the differential equation
xy" + (n+l-x)y' + (k-n)y= 0 (8el4)
and the rescurrence relations

Ll =1 ) (8.5)

2. n
i%ﬁ%%%l 3+l(x) + (x+n-2k-l)L (x) + k Lk 1(x) =0 (8.6)

n‘H'(x) = (1/x) [_(k-n)Lk(x) = kaL l(x)] (8.7)

n
Also, the polynomial Lk(x) satisfies the orthogonality

integral

- 3
“Xnn, ,.n o ki)
joe LRI (x)ax = TEN S(k,m) (8.8)

*a word of caution is in order here. The definition
(8.1) or (8.3) for the associated Laguerre polynomials is
the one usually taken In applied mathematics. In pure
mathematies the funection

n M— -ixs H
Lk(x) = o 1F1( kyn+l;x)

which 18 the solution of the differential equation
xy" + (n+lex)y' + ky = 0
is often taken as the definition of the assoclated Laguerre

polynomial so that care must be taken in reading the litera-
ture,
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Equation (B.8) is a special case of a more general

formula first derived by Schrodinger {69)

f o L2 (x)L], (x)dx = plkik'l i@(—l)k"k'(kf;’jr)
x (2 )CT) (8.9)

Here b 18 the smaller of the two integers (k-n) and
(k'=n'), and the parentheses symbols denot binomial coef-

ficients.
B. Derivation of Equation (3.4})
The one-center nuclear attraction integral between
the Laguerre functions is given by (for convenience we let

nsnt')

(8 l-1/2 (8, 1) = ~228(mm0 ) 5(a,0)

(n=g-1)1(n'-g-1)} % o~Eyg2atl 2q+2 2q+2
x{;n+q+l)f%n'+q+1);3_} n+q+l( )Ln,+Q+l(x)dx (8.10)

where we have used the change of variable 2zr=x. The
integral on the right side of (8.10) is easily evaluated
using (8.9). We obtain
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b 8 ‘l n+n? -1
(20+1) Lt L (mi+gel)t 5 (-1) -
-1 2q+l+er
x (n'-q—l-r)( r ) (8.11)
n=-g~1
= (n+q+l)!(n'+q+l)! 2& (2q+1+r)1/rl (8.12)

r=0

(n+q*1)!2(nf+q+l)!

" (n-q-1)!(2q%2) (8.13)
where we have used the relation (32, p. 586)
-n k/ntk=-1
( k)“’ (-1)*( K ) (8.14)

in going from (8.11) to (8.12). The summation in (8.12) is

a particular case of

b ‘
o fetb+l)l
gio(c*r)!/fl éTTEIIT" (8.15)

Substituting (8.13) back into (8.10), we obtain (3.4l),
which ls the desired result.

C. Derivation of Equation (3.43)

The kinetic energy integral between the Laguerre

functions 1s given by
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]

(ﬁ{gqmlg%vzlﬂ;g q‘m! ) = S(mum' )S(q; qQ' ) (1/,4-3)

oo

e

{ (n'Q*l)é(n'"Q“l)xji% j dx x%e zquL23+fl(x)
(n+q+l) L7 (n?+q+l) !t 0 n+q

1 4 _2a +1 q ~5X 2q+2
R B Ay Ee o E TP

where x=2zr, Carrying out the differentiation, eliminating

the second derivative using (8.4), and regrouping, we get

(1/22) {{n=q-1)1(n'-g-1)! }% (A + nB -C/l) (8.17)
(n+q+l)13(n'+q+l)!3
where
00
A= j;e-xx2q+lLi3;fl(K)Li?:3+l(x)dx (8.18)
* 1_2q+2 2q+2
B = j;e-xx2q* Ln3q+l(x)Ln?+q+l(X)dx (8.19)
0
C = jge‘xx2q+2L§E;$l(x)Li?:i+l(x)dx (8.20)

The integral C is given by the orthogonality integral
(8.8) while B ig just the one-center nuclear attraction
integral (8.10), except for a constant factor, and is given

by (8.13). As before, A is evaluated using (8.9), and is
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n-g=2
A= ~(2q*1)!(n*q+l)x(n*+q&l)![ﬁ(n.n') 2% (n~g-1-r)

r=0
2q+l+r n-g-1 - 2q+l+r‘]
x( r ) + E;é (n’~q—l-r)( . ) (8.21)
n n!

where, in the brackets, the first term 1s used when n=n'
and the second term is used when n<n'. The sums are easily

evaluated using (8.15) to give

A = - (ntgrl)t(nt+gr1)if(nt-g-1) - (m-a=V)], ,.n.(8.22)
{n~qg~1)1 L 2q+e 2q+3

Subatituting the values of A, B, and C into (8.16) and
collecting terms, we obtain (3.43), which is the desired

result.,

D, The Auxiliary Functions

l. The auxiliary funetions A(n,q) and D(n,q)

The A({n,q) are defined by

oD
- - n
A(n,q) = J;rne Pap = nte Y™t 5 %kt (8.23)
k=0

They are most easily calculated by means of the recursion
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relations
Aln,q) = q‘l(nﬂ(n-l,q) + e 3 (8.2Y4)
4(0,q) = ¢"Y/q (8.25)

Rather extensive tabulations of these functions have been
published (70), but these tables are of prectical use only in
hand calculations since the machine calculation based on
(6.24) i8s an extremely efficient procedure, especially if

the A{n,q) for a range n=0(Ll)N are required. On the other
hand, if a particular A(n,q) 1s required, equation (8.23)
should probably be used. In elther case, floating point
arithmetic must be used because of the wlde variation in

the value of A(n,q) with n,

The D{n,q) are defined by
lnege -1l =q
D(n,q) = Sor e dr = (n+l) e 1Fl(l;n+2;q)
-1 ~q ¥ _(n+l)l r
= (n+l 8.
(n+1) e fgo (n+l+r)! 4 (8.26)
They are related to the A(n,q) by the relation

Al{n,q) = n&/qn+l - D(n,q) (8.27)

but this relation obviously cannot be used to get the D(n,q)
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sinee,}fmr n>q, A(n,q) behaves like nl/ﬁn+l. Rather, given

the D{n,q), equation (8.27) is a convenient method for

caleulating the_A(n,q). A recursion scheme for generating
these functions is provided by (8.26) followed by repeated

application of the downward recursion relation
D(n-1,q9) = n~t(gD(n,q) + &%) (6.26)

The upward recursion rapidly loses s .gnificant figures and
cannot be used if n is large (say 10) without carrying a
prohibitive number of figures, We observe that D(n,q)<1,
and hence fixed polnt arlithmetic can ecasily be applied with
a minimum of scalling difficulties.

For individual computations of D(n,q) with |ql4n¢3/L,
lFl(l;n*E;q) can be evaluated in terms of rapidly converging
continued fractions (71, 72). Otherwise, the series develop-
ment (8.26) should be used. In this case, the magnitude of
every term beyond the first is less than one, facilitating
the use of fixed point aprithmetic.

The D(n,q) occcur not only in the two=-center nuclear
attraction integral, but also can be used to express the

Kotani B,(q) function
L on gt |
B, (q) = Jﬂl t2e"9%at = p{n,q) + (-1)®D(n,-q) (8.29)

This formulation 1s preferable to the traditional method
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of computation which rapldly loses digits. See, however,
reference (73) for an alternative convergent method of

computing the Bn(q).

2. The auxiliary function J(m,d;in,s)

The functions J(m,d;n,B) defined by (3.27) are most

easlily calculated by means of the recursion relations

7(0,03n,8) = ni/a(e+s)™ (8.30)
J(0,d;n+l,8) = "('3%)‘ J(0,%;n,8) (8.31)
Mmmmmﬂ%deMmm)+Mmﬂﬂwmmm%

= % J(m=1,03n,8) + J(0,;n+m,g) (8.32)

J(m,d;3n,B) = % J{(m,d ;n-1,8) "(d/ﬂ)J(O,d;n"'m:F) " (8.33)

With these three relations it 1s always possible to recur
in such a way that all terms enter positively. The most
efficient scheme for either hand or machine calculation is
as follows:

Suppose we require J(m,d;n,8) for all mj¢m¢m,, n én<n

1
First, compute J(0,%3N,8) for N=0, 1, « « ., n,tm, using

2.

(8.30) and (8.31). ©Next, caleculate J(nha;nehﬁﬂ (m=l, 2, . .,
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mz) using equation (8.32). Finally, equation (8.33) is used

to calculate J(m,«;n,s) for n=n,, n,=l, + .« «, n, for each

2 1

value of m in the interval (ml,me).
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